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   Quantum computer has a great attention all over the world, several attempts to construct 

them by supposing a theoretical or experimental model for qubit which is the basic unit of 

quantum computers. Qubit is formed from two-level physical systems, So, a semiconductor 

quantum dot is suitable for a qubit where a qubit state is formed from superposition between 

two spin states, silicon (Si) quantum dot is one of the suitable systems for qubit and quantum 

logic gate because of its long coherence time. In this work, we study the theoretical model 

of quantum dots from silicon (Si) which couple through superposition and entanglement 

mechanisms to form a quantum logic gate. we have investigated the magnetic field effect on 

exchange interaction by using two approximate methods Hund – Mullikan (HM)  and Hitler 

– London (LH) for calculation and evaluation of the exchange interaction coupling, also 

studied the influence of inter – dots distance on the exchange coupling. From an investigation 

of exchange interaction, silicon quantum dots is the best suitable for quantum logic gate.   
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1. Introduction 

Recently, nanotechnology has the principal role in all life 

fields and gives significant progress in all science 

directions, one of these areas is quantum computer. For 

establishing it, we need a unit for storge information and 

quantum logic gate. Quantum computers [1,2] depend on 

quantum mechanics such as superposition and 

entanglement which are two important mechanisms for 

quantum logic gates. There are quantum computer 

criteria as in [3,4]. There are many physical systems But 

the more suitable one for qubits is a quantum dot [5,6]. 

quantum dot is an example of a two-level system that 

achieve the idea of a qubit where the electron has two 

spin state (spin up or spin down), and the qubit state is a 

superposition between two levels. Quantum dot from Si 

is the best candidate for qubit because of the long 

coherence time and small size [7-9]. Quantum logic gates 

form from two qubits coupled by superposition and 

entanglement mechanism for example To calculate 

Quantum logic gates as we first the unitary time 

evolution between spins in dots is important to calculate  

any quantum logic gate  

𝑈12(𝑡) = ⅇ
−ⅈtℋ𝑠(𝑡) ℏ⁄    

Where ℋ𝑠 is given by 𝐽12(𝑡)S1. S2(where J12   is the 

difference of energy between singlet and triplet state), 

and 𝑆𝑖 is the spin operator acting on electron i.  

In our study, we investigate a model of Si double 

quantum dot as a quantum logic gate. We calculate the 

exchange interaction by two approximate methods Hund 

– Mullikan (HM) and Hitler – London (LH) [11-13]. 

Investigating the effect of physical parameters such as 

magnetic field and inter –dot distance on interaction 

coupling. 

2. Theoretical model 

Our model is two quantum dots from Si, in each center 

of the dot there is one electron of spin [may be in up state 

or in down state] and the distance between each dot and 

origin is 𝑑. The effective mass of an electron is  

0.191𝑚𝑒. The electron may be tunneled from a dot to 

another. To write the Hamiltonian of the system, first, to 

simplify the calculation suppose the two dots are the 
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same. In the z direction we applied a magnetic field and 

an electric field was applied in the x-axis, so Hamilton is  

ℋ = ∑ 𝑃2
𝑖=0 𝑖

+ ex𝐸 +ℋ𝑍 + 𝐹𝑐𝑜𝑢𝑙 +ℋSO +ℋ𝑆        (1)       

  𝑃𝑖 =
1

2𝑚
(𝑝𝑖 − 𝐴

→

(𝑟𝑖))

2

+ 𝑉(𝑟𝑖)       (2) 

 Where 𝑃𝑖  is the single particle energy, 

is The vector potential where is given by: 

  𝐴
→

(𝑟𝑖)=
[𝐵
→
×𝑟𝑖
→
]

2
 → 𝐴±(𝑟𝑖) =

𝐵

2
(−𝑦, 𝑥, 0)          (3) 

 ℋ𝑍 is zeeman term is given by:   

               ℋ𝑍 = 𝑔eff𝜇𝐵∑𝐵𝑆𝑍
𝑖                                             (4)     

 The zeman effect for silicon is small value, so we can 

neglect it from our calculation.  

 ℋSO is the spin orbit coupling is: 

  𝐻so =
𝜔𝑜
2

2𝑚𝑐2
𝑆. 𝐿                                        (5)  

(L is the election angular momentum inside the quantum 

dot in units of ℏ ). The spin-orbit interaction has 

significant value for a system with few no. of electrons. 

Quantum computer is preferred qubit with weak spin-

orbital coupling as semiconductor quantum dots [1] so, 

we can neglect it for Si quantum dots. The couloum 

energy between the electrons is: 

 

  𝐹𝑐𝑜𝑢𝑙 = 
ⅇ2

Ɛ 𝑟12
                                  (6) 

Where ɛ is the constant of Si dialectic (Ɛ =7.9), r12 is two 

electrons distance, from experimental researches the 

quantum dot potential is a harmonic oscillator [4,7] 

The potential between two dots should be quadratic 

potential       

𝑉(𝑥, 𝑦) =
𝜔0ℏ

2𝑎0
2 ((

𝑥2

2 𝑎
−
a

2
)
2

+ 𝑦2 )              (7)    

Which separate double dots (𝑓𝑜𝑟 𝑥 𝑎𝑟𝑜𝑢𝑛𝑑 ± 𝑑) into 

two harmonic wells of frequency ω𝑜, one for each dot, in 

the limit of large inter-dot distance, i.e. for 2𝑑 ≫ 2𝑑𝐵 , 

where a is half the distance between the centers of the 

dots, and the  Boher radius of a single quantum dot as 

harmonic potential is 𝑑𝐵 = √ℏ/𝑚𝜔0  is a scale for wave 

function extension of an electron inside dots. 

From the experimental the potential of a quantum dot is 

a harmonic oscillator, so, the wave function 𝜙(𝑥, 𝑦) of an 

electron in the ground state inside the quantum dot  given 

by  

𝜙(𝑥, 𝑦) = √
𝑚𝜔

𝜋ℏ
ⅇ−𝑚

𝜔(𝑥2+𝑦2)
2ℏ  (8) 

Where ω = √ω𝑜
2 + ω𝑙

2, 𝑤ℎⅇ𝑟ⅇ 𝜔𝑙  is the Larmor 

frequency (ω𝑙 =
eB

𝑚∗
), so  

The wave function of the ground state electron inside the 

dot is given by: 

𝜙±𝑑(𝑥, 𝑦) = exp(±iyd 2⁄ 𝑙𝐵
2)𝜙(𝑥 ∓ 𝑑, 𝑦) (9) 

Where  exp(±iyd 2⁄ 𝑙𝐵
2) magnetic field phase factor 

[11], 𝑙𝐵 = √
ℏ𝑐

𝜔𝑙𝑚
∗  is the length of magnetic field, we 

choose the gauge described by the vector. 

𝐴 =
[𝐵 ×  𝑟]

2
→ 𝐴± = 𝐵(−𝑦, 𝑥, 0) (10) 

After this consideration, the two electrons Hamiltonian 

is. 

ℋorb =
1

2𝑚
(𝑝1 −

ⅇ

𝑐
𝐴(𝑟1))

2

+
1

2𝑚
(𝑝2 −

ⅇ

𝑐
𝐴(𝑟2))

2

+ 𝑉(𝑥, 𝑦) +
ⅇ2

𝜀 𝑟12
 

(11) 

We can write the Hamiltonian of two quantum dots as: 

 ℋorb =∑
(𝑃𝑖 − ⅇ

𝐴(𝑟𝑖)
𝐶
)

2𝑚

2
2

𝑖=1

+
𝑚𝑤2

2
((𝑥𝑖 ∓ 𝑑)

2

+ 𝑦𝑖
2) +𝑊 + 𝑉𝑐  

(12) 

Where 𝑊(𝑥, 𝑦) = 𝑉(𝑥, 𝑦) −
mω2

2
((𝑥1 + 𝑑)

2 + (𝑥2 −

𝑑)2) and 𝑉𝑐 =
𝑒2

Ɛ 𝑟12
     

Under a magnetic field, the two electron spin  have two 

spin states one of them is a singlet state (S = 0) |𝑆⟩ =
1

√2
|↑↓ −↓↑⟩   

and the other is triplet state (S = 1) |𝑇𝑜⟩ =
1

√2
|↑↓ +↓↑⟩, 

|𝑇+⟩ = |↑↑⟩, |𝑇−⟩ = |↓↓⟩ 
where  the ground state is a singlet and the first excited 

state is triplet under the condition   ℏω𝑜 ≫ 𝐾 𝑇. 

Exchange interaction is given by the difference between 

triplet and singlet state. So  𝐽 = 𝐸𝑇 − 𝐸𝑆 to calculate it 

we use this expectation equation: 

𝐽 = ⟨𝜓𝑇|ℋ𝑜𝑟𝑏|𝜓𝑇⟩ − ⟨𝜓𝑆|ℋ𝑜𝑟𝑏|𝜓𝑆⟩ (13) 

 A quantum dot is like an atom (artificial atom) so we can 

consider the two quantum dots as artificial molecules. 

Then, we can use the same approximation methods as   

 Hund – Mulliken and Heitler – London models, under 

the condition at zero magnetic fields the ground state 

should be singlet (𝑎𝑡 𝐵 = 0 𝑖𝑠  𝐽 >  0).. 
 

Heitler – London model 

Heitler – London model is the approximation method to 

evaluate the exchange interaction between two electrons 

in a molecule or two quantum dots. It considers the single 

electron wave function as a basis and the system is two 

levels one is a singlet and the other is a triplet state which 

is a linear combination of basis. The accuracy of this 

method is related to the distance between two dots as 

larger as a more accurate exchange value. 

The two-level system (singlet and triplet wave function ) 

is: 

 

❘𝜓𝑆 𝑇⁄ 〉 =
❘𝜙𝐿(1)𝜙𝑅(2) ± 𝜙𝐿(2)𝜙𝑅(1)〉

√2(1 ± 𝑝LR
2 )

×
❘ ↑↓ ∓↓↑〉

√2
 

(14) 
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The first term is the orbital contribution, the spin wave 

function term can be neglected.  

The orbit wave function overlap is: 

p = ∫ 𝜙+𝑑
∗ (𝑟)𝜙−𝑑(𝑟) 𝑑

2𝑟 = 〈𝜙𝐿❘𝜙𝑅〉

= exp (
−𝑚𝜔𝑑2

ℏ

−
𝑑2ℏ

4𝑙𝐵𝑚𝜔
) 

(15) 

From equation (7), (8), and (9) the exchange energy due 

to HL obtained by 

𝐽𝐻𝐿 = ⟨𝜓𝑇|ℋ𝑜𝑟𝑏|𝜓𝑇⟩ − ⟨𝜓𝑆|ℋ𝑜𝑟𝑏|𝜓𝑆⟩ (16) 
This can be written as: 

𝐽𝐻𝐿 =
𝑝2

1 − 𝑝4
(𝐽𝑊 + 𝐽𝑉𝑐) 

=
p2

1 − p4
[〈𝜙𝐿(1)𝜙𝑅(2)❘𝑤❘𝜙𝐿(1)𝜙𝑅(2)〉

−
1

p2
〈𝜙𝐿(1)𝜙𝑅(2)❘𝑤❘𝜙𝐿(2)𝜙𝑅(1)〉      

+  〈𝜙𝐿(1)𝜙𝑅(2)❘𝑐❘𝜙𝐿(1)𝜙𝑅(2)〉    

−
1

p2
〈𝜙𝐿(1)𝜙𝑅(2)❘𝑐❘𝜙𝐿(2)𝜙𝑅(1)〉] 

(17) 

 after calculation, the exchange interaction by the HL 

approximation method is given by:       

𝐽𝐻𝐿 =
ℏ𝜔0

𝑠𝑖𝑛ℎ [2𝑑2 (2𝑏 −
1
𝑏
)]
[
𝑏𝛼2

16𝜋2𝜔
ⅇ−10𝑏𝛼

2
(1

+ ⅇ
𝑏𝛼2(3−

1
𝑏2
)
) (𝜔0 −

4𝜔2

𝜔0

+ 3ℏ𝜔0)

+
𝑆√𝑏𝐸𝑟𝑓[2√2𝑏𝑑]

8𝜋2
(ⅇ2𝑏𝑎

2

− ⅇ2
(𝑏−

1
𝑏
)𝑑2)] 

 

Where 𝐸𝑟𝑓 is the error function given by Erf (𝑧) =
2

√𝜋
∫ ⅇ−𝑡

2
𝑑𝑡

𝑧

0
,  and 𝒔 =

1

8√2𝜋3 2⁄ (
ⅇ𝟐

𝒌𝒂𝟎
) ℏ𝛚𝒐⁄   is Coulomb 

energy to confining energy,   the b is the magnetic factor 

given by 𝒃 =
𝜔

𝜔𝒐
= √𝟏 +

𝜔𝒍
𝟐

𝜔𝒐
𝟐, and 𝜶 =

𝒅

𝒂𝟎
  is the ratio 

between interdot distance and interatomic distance. As 

shown in Fig.(1), the exchange coupling J (B)  against 

magnetic field. It is clear that at zero magnetic fields the 

exchange coupling is positive because the two electrons 

in a singlet state,  as the magnetic field increases as J 

decreases until reaches zero at B = 6.25 T(for  ℏ𝛚𝒐 ≈
8mev), then as the magnetic field increases as J 

decreases, means that the state changes from singlet to 

triplet state.  

 

Hund-Mulliken method  

Hund-Mullikan is an approximate method which differs 

from Heitler – London model  in state number, it includes 

the doubly occupied states, where there are two  doubly 

occupied states 𝑏ⅇ𝑠𝑖𝑑ⅇ 𝑡ℎⅇ Heitler –  London singlets 

𝑆(1, 1) and triplet 𝑇(1, 1). Of course, these states are 

linear combinations from the same basis single electron 

wave function as in HL the doubly occupied state should 

be a singlet state according to the Pauli principle. So the 

two Hilbert spaces in HL become four Hilbert spaces in 

HM, and the four-wave functions are: 

𝜓𝐿
𝑑 = 𝛷𝐿(𝑟1)𝛷𝐿(𝑟2) (17) 

 

𝜓𝑅
𝑑 = 𝛷𝑅(𝑟1)𝛷𝑅(𝑟2) (18) 

𝜓𝑆 =
𝛷𝐿(𝑟1)𝛷𝑅(𝑟2) + 𝛷𝐿(𝑟2)𝛷𝑅(𝑟1)

√2
 (19) 

𝜓𝑇 =
𝛷𝐿(𝑟1)𝛷𝑅(𝑟2) − 𝛷𝐿(𝑟2)𝛷𝑅(𝑟1)

√2
 

 

The Hamiltonian operator according to HM 

wavefunctions is: 

 ℋorb

= 𝜖𝑅 + 𝜖𝐿 +

(

 

𝑈 𝑋
𝑋 𝑈

√2𝑡 √2𝑡
0 0

    

√2𝑡 0

√2𝑡 0
𝑉𝑆 0
0 𝑉𝑇)

  
(20) 

 

Then,  we obtained the energy for states by: 

𝛦𝑇 = 𝜖𝑅 + 𝜖𝐿 + 𝑉𝑇  
(21) 

 

 

𝐸S0 = 𝜖𝑅 + 𝜖𝐿 + 𝑈 − 𝑋 (22) 
 

𝐸𝑆−

= 𝜖𝑅 + 𝜖𝐿 +
𝑈

2
+
𝑉𝑆
2
+
𝑋

2

− √
(𝑈 − 𝑉𝑆 + 𝑋)

2

4
+ 4𝑡2   

(23) 

 

As in Figure [2], the distance between two dots increase 

as J decrease and that is physically true because wave 

function overlap decrease as the distance increase. 

E𝑆+

= 𝜖𝑅 + 𝜖𝐿 +
𝑈

2
+
𝑉𝑆
2
+
𝑋

2

+ √
(𝑈 − 𝑉𝑆 + 𝑋)

2

4
+ 4𝑡2 

(24) 

Where 

 

𝜖𝑅 𝐿⁄ = 〈𝛷𝑅 𝐿⁄ ❘𝑘±𝑑
0 ❘𝛷𝑅 𝐿⁄ 〉 are the single electron energy 

in each dot, 𝑈 = 〈𝜓𝐿 𝑅⁄
𝑑 ❘𝐶❘𝜓𝐿 𝑅⁄

𝑑 〉 is the coulomb 

reputation energy, 𝑋 = 〈𝜓𝐿 𝑅⁄
𝑑 ❘𝐶❘𝜓𝑅 𝐿⁄

𝑑 〉 is Coulomb 

exchange energy, 𝑉𝑆 = 〈𝜓𝑆❘𝐶❘𝜓𝑆〉,  𝑉𝑇 = 〈𝜓𝑇❘𝐶❘𝜓𝑇〉 are 

the Coulomb energies for the singlet and triplet state for 

one electron inside each quantum dot. and 𝑡 =

〈𝛷𝛷𝐿 𝑅⁄
❘𝑘∓𝑑
0 ❘𝛷𝑅 𝐿⁄ 〉 +

1

√2
〈𝜓𝑆❘𝐶❘𝜓𝐿 𝑅⁄

𝑑 〉 as in  [11], is a 

tunneling energy matrix element.  
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Figure (1). HL model, variation of exchange interaction with magnetic field at value 8 meV of confinement 

energy and 30.24 nm  for distance between dots. 

 

 
Figure (2) the exchange coupling J with the distance between two dots (magnetic field is zero). 

 

Fig.(3)The exchange coupling J against the magnetic field (the distance between two dots is fixed) 
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The orthonormal of basis (single electron 

wavefunction) is given by: 

𝛷𝐿 𝑅⁄

= (𝜙𝐿 𝑅⁄ − g𝜙𝑅 𝐿⁄ ) (√1 − 2 𝑝 g + g
2)    ⁄  

 
(25) 

where g =
(1−√1−𝑝2)

𝑝
 and 𝑝  is the overlap 

wavefunction between two electrons.   

we can obtain the exchange coupling J from 

diagonalizing of Hamiltonian 

Where J is the difference between triplet state and 

singlet state  

So,  

𝐽𝐻𝑀 = 𝐸𝑇−= 𝑉𝑇 − 𝑉𝑆

−
1

2
(𝑈 − 𝑉𝑆 + 𝑋)

+
1

2
√(𝑈 − 𝑉𝑆 + 𝑋)

2

+ 16𝑡2 

(26) 

 

As shown in Fig. (3), the HM gives qualitative agreement with 

HL behavior.   

 

Conclusion  

From our work, we investigate the exchange 

interaction which is the important parameter of the 

quantum logic gate from Si two quantum dots, we find 

the physical parameters as an interdot distance and 

external magnetic field parameter effect on exchange 

interaction and variation from singlet to triplet state. 

the calculation of the exchange interaction of double 

qubits Si is smaller than other semiconductor qubits on 

account of the electron mass inside Silicon which is 

large so the overlap is small which appears in the 

calculation. Besides our results, Si qubits have a small 

size which makes it the best suitable for quantum logic 

gate.  
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