
International Journal of Theoretical and Applied Research, 2023, Vol. 2, No. 2, 225-233

International Journal of Theoretical and Applied Research (IJTAR)

ISSN: 2812-5878

Homepage: https://ijtar.journals.ekb.eg

Original article

Offline signature verification using deep learning method

Nehal Hamdy Al-banhawy a, Heba Mohsen b, Neveen I. Ghali c, Ayman Khedr d *

a Mathematics and Computer Science Department, Faculty of Science, Al-Azhar University, Cairo, Egypt.
b Lecturer, Computer Science Department, Faculty of Computers and Information Technology, Future University in

Egypt, New Cairo, Egypt.
c Head of Digital Media Technology Department, Faculty of Computers and Information Technology, Future University

in Egypt, New Cairo, Egypt.
d Professor of Information Systems, Faculty of Computers and Artificial Intelligence, Helwan University, Cairo, Egypt.

ARTICLE INFO ABSTRACT

Received 01/06/2023

Revised 12/11/2023

Accepted 14/11/2023

One of the most challenging biometric authentication problems in recent years that we

experience in daily life is signature verification. Signature verification systems are

classified into two main approaches: offline systems and online systems. The offline

signature verification systems are more difficult than the online systems since online

systems have further information, such as the velocity of writing, motion style, and pen

pressure, which allow for extracting more features. This paper presents a deep learning

method based on using the convolutional neural network (CNN) model for solving the

offline signature verification problem to prevent the process of faking signatures that

thieves practice. The CNN model was applied for extracting features and classifying

whether the signature is genuine or forged. Our proposed method succeeded in

achieving an accuracy of 94.73% on the CEDAR dataset by using two types of

signatures: genuine signatures and skilled forged signatures to test the performance of

the system, which indicates that the method was effective and it can be supported by

more feature extractors to get better results.

Keywords

Signature analysis

Signature verification

Deep learning

Convolutional Neural

Network

Graphical abstract

∗ Corresponding author

E-mail address: nehalhamdy2017@gmail.com

 DOI: 10.21608/IJTAR.2023.205346.1051

Special issue "selected papers from the International Annual Conference on Basic and Applied Science (IACBAS-2023)"

https://ijtar.journals.ekb.eg/
mailto:nehalhamdy2017@gmail.com

Al-banhawy et al. 226

1. Introduction

One of the most commonly used techniques to

determine the identity of individuals that we experience

in our daily lives is handwritten signature analysis,

particularly in banking systems, financial applications,

administrative applications, and security. Individuals

can be authenticated using two main types of

characteristics: physiological and behavioral. The

physiological characteristics include face, iris,

fingerprint, and DNA. While behavioral characteristics

include handwritten signatures and gait, a signature is

still the most reliable way for authentication in many

financial transactions because its acquisition process is

simple and it requires less effort. However, this study is

considered one of the most difficult challenges because

the signatures of the same person may be affected by

the person's situation at different times and are not

necessarily similar [1, 2].

 A handwritten signature verification system is

used to verify the authenticity of individuals

automatically by their signatures. Therefore, the

performance of this system is measured by its ability to

classify the genuine signatures and the forged

signatures correctly. Forgery is categorized according to

its similarity to the genuine signature into three main

types: random forgery, simple forgery (unskilled), and

skilled forgery. In the case of random forgery, the

forger does not have any information about the

signatory's name or the shape of his signature and he

may use his or her own signature. In such a case, the

forger's signature shape is entirely different from the

original signature. In the case of simple forgery, the

forger knows only the signatory's name with no

information about the shape of his signature. In such a

case, the forger’s signature shape might be similar to

the signatory's original signature. In a skilled forgery

case, the forger knows both the signatory’s name and

signature shape with some practice to make a good

faking of the signatory’s signature. It is difficult to

verify this kind of forgery because of its high similarity

to the signatory's signature [3, 4]. Figure 1 illustrates

some samples of genuine signatures for some writers

and how the skilled forged signatures for them are

similar to the genuine signatures.

 The systems of signature verification are

divided into two main approaches: offline/static systems

and online /dynamic systems. As for offline systems, a

signature is scanned or captured from a document such

as a passport or a bank check as an image, and then the

system reads that image of the signature and extracts

features from it. On the other hand, the online systems

use devices such as smartphones, tablets, and electronic

pads to capture more information such as velocity of

writing, motion style, and pen pressure, while the user

is entering his signature, which enables the system to

extract more features [3, 5].

The signature verification system has two basic

scenarios when dealing with users: writer (user)

independent (WI) and writer (user) dependent (WD). In

writer-independent, one model is trained for all writers

and extracts a similarity/dissimilarity vector then uses it

for comparing the questioned signature with reference

signatures. Most researchers prefer this method because

it does not require retraining the system when a new

writer is added, but it needs large enough data to

perform well. In writer-dependent, there is one specific

model for each writer that is trained on his signatures

and is responsible for verifying them. When adding a

new writer to the system, the system needs to be trained

on it [6].

 Every handwritten signature verification

system includes three primary stages, preprocessing,

feature extraction, and classification. Signature features

represent properties that can be detected from the entire

line path to describe every signature as a vector of

values, which allows to discriminate between the

signatures of different writers [5]. Feature extractors

can be classified as handcrafted feature extractors or

learning feature representations from row data.

Handcrafted feature extractors are widely used for

signature verification [2, 7, 8], but it need human

experts, extensive domain understanding, and more

time when dealing with huge datasets. With the

breakthrough in artificial intelligence and the

appearance of deep learning techniques, a revolution

has occurred in the performance of automatic feature

extraction systems because of their ability to learn more

meaningful features from data by themselves effectively

and handle a large and complex dataset in less time [9].

Signature verification systems that are based on deep

learning methods have achieved great advancement in

recent years, especially the convolutional neural

network (CNN) [10]. CNNs are currently supposed to

be the most extensively used deep learning architectures

for learning features from images because of their

various successes in different fields, including pattern

recognition and image classification [11].

 The proposed models of CNN differ according

to the number of convolutional layers, filters, kernel

size, max-pooling layers, and fully connected layers.

Some researchers used simple models of CNN to solve

the signature verification problem, but either they did

not achieve enough success as in [12] or they achieved

successful performance by using a large number of

samples for training (more than 750 samples for each

signer) as in [13]. Some researchers resorted to using

common CNN models with a large number of layers, as

in [14] that used two deep models of CNN (one with 22

layers and the other model with 42 layers) and obtained

noticeable performance but required more computations

and more time. Some researchers used pre-trained

models of CNN instead of building a new deep CNN

model to make it capable of extracting a high feature

representation of the images in addition to learning the

significant features from the signature images in the

new dataset, as in [10] and [15].

 For the classification stage, classifiers like

Euclidean distance [16], Neural Network (NN) [2, 7,

12, 13 and 17], Support Vector Machine (SVM) [7, 8,

227 International Journal of Theoretical and Applied Research, 2023, 2(2)

11, 18-21] and K- nearest neighbor (K-NN) [11 and 19]

are widely used in signature verification problem, but

NN and SVM are widely used as a result of their superb

performance compared to the rest.

Since the use of signature verification systems is

essential in many organizations, such as banks, it

requires speed as well as accuracy and secrecy.

Although deep learning proved its success in signature

verification problem solving, deeper models need

essential computational resources like a powerful GPU

and large memory that may be highly expensive and

time-consuming. Therefore, the objective of our paper

is to present a simple and effective offline signature

verification system based on using important

preprocessing steps for signature images and a simple

CNN model for feature extraction and classification that

can verify genuine and forged signatures automatically

in less time, even though the forgery is highly skilled.

The rest of the paper is ordered as follows: related

works, the used dataset, the preprocessing steps of it,

and the proposed models of CNN are presented in

Section 2. The results and discussion are illustrated in

Section 3. Finally, the conclusion is explained in

Section 4.

2. Materials and Methods

The offline handwritten signature verification system

includes three primary stages: preprocessing, feature

extraction, and classification. The researchers proposed

different techniques to perform feature extraction and

classification stages; we will summarize some of them

in the following subsection.

 2.1 Related works

Over the last years, many researchers have proposed

several systems to solve the signature verification

problem due to its importance and difficulty. Some of

the handcrafted feature extraction methods that are used

in signature verification systems will be outlined first,

and then learning features models will be presented.

Kumar et al. [7] proposed a WI offline signature

verification schema by extracting a set of features that

is based on using the surroundedness property of a

signature, which represents the shape and texture

attributes of the signature, by using two classifiers:

support vector machine and multilayer perceptron, on

two datasets: GPDS300 and CEDAR datasets. The best

result was achieved by using a multilayer perceptron,

with 86.24% accuracy for the GPDS300 dataset and

91.67% accuracy for the CEDAR dataset.

Bhunia et al. [8] proposed a WD signature verification

method that used discrete wavelet transform (DWT)

and local quantized patterns (LQP) for extracting

texture features from signature images. They used one-

class support vector machines (SVMs) for classification

by considering only genuine signatures for training.

Four offline datasets were used to test the system:

GPDS-300, MCYT, BHSig-260, and CEDAR datasets

that achieved Average Error Rate (AER) results as

follows: 4.18, 6.10, 10.91, and 1.64, respectively.

Jain et al. [2] proposed a signature verification

methodology based on extracting geometrical features

like center, connected components, and isolated points

from each signature image. An artificial neural network

(ANN) was used for classification and was tested on

MCYT-100, MCYT-75, GPDS-4000, BHSig260, and

CVBLSig datasets. This model was trained on genuine

signatures only and all datasets were tested on random

forgeries with accuracy of 97.36%, 97.33%, 92.32%,

97.79%, 95.29%, 97.55%, and 83.38% for MCYT-100,

MCYT-75, GPDS300, BHSig Bengali, BHSig Hindi,

CVBLSig-V1 and CVBLSig-V2, respectively. Some

datasets were tested on skilled forgeries too which

achieved an accuracy of about 79.32%, 83.2%, 76.03%,

and 83.5 for MCYT-100, GPDS300, BHSig Bengali,

and Hindi, respectively.

With the improvement in artificial intelligence and the

appearance of deep learning techniques, the

performance of automatic feature extraction systems

has also improved. Signature verification systems that

use deep learning have achieved great advancement

recently [10]. Yapıcı et al. [12] proposed an offline

system using a convolutional neural network (CNN).

The CNN was used to perform feature extraction and

classification separately for the WD scenario and WI

scenario. The obtained results displayed that the WI

scenario implemented 62.5% accuracy and the WD

scenario implemented 75% accuracy when using the

GPDS synthetic signature dataset that contains

signatures of 4000 different writers.

Gideon et al. [13] used CNN to extract features and

classification for images of the dataset, which consists

of 6000 signatures for 3 users, each of whom has 1000

genuine and 1000 forged signatures. They separated the

forged signatures from the genuine signatures for every

user and considered each of them as a separate user

resulting a dataset with 6 users. By using an 80-20 data

split ratio, they achieved a training accuracy of 98.11%

and a validation accuracy of 98.23%.

Jahandad et al. [14] used two different models of deep

convolutional neural network architectures called

Inception-v1 (deep network with 22 layers) and

Inception-v3 (with 42 layers deep) for extracting

features and classifying genuine and skilled forged

signatures. Signatures of 1000 users of the common

GPDS dataset were used to evaluate the system. The

best results were obtained by the Inception-v1 model

when using only 20 users from the dataset. The results

are 83% validation accuracy and 17% Equal Error Rate

(EER) for Inception-v1, 75% validation accuracy and

24% EER.

Vohra et al. [18] discussed two models for solving the

signature verification problem. The first model

extracted the following features: histogram of gradient,

aspect ratio, shape, contour area, bounding area, and

Al-banhawy et al. 228

convex hull area, then used SVM as a classifier. The

second model used CNN for feature extraction and

classification. ICDAR Dutch dataset was used here,

which has 320 signatures taken from 4 individuals plus

80 signature images taken from four individuals. The

SVM model obtained 86.39% accuracy and the CNN

model obtained 83.78%.

Hung et al. [15] presented an offline signature system

that is based on using Siamese Triplet CNN for

extracting features and a fully connected neural network

for binary classification to verify the genuine and

forged signatures automatically. The used model of

CNN was the Xception model (with 71 layers), which is

a pre-trained model on the ImageNet dataset, and then it

was trained on both genuine and forged signatures of

the Bengali dataset from BHSig260. The obtained

results are 27.97 False Rejection Rate (FRR), 13.66

False Acceptance Rate (FAR), and 14.18 EER with the

use of random forgeries.

Some researchers used a hybrid between CNN and

another feature extractor for feature extraction.

Alsuhimat et al. [11] presented a hybrid method that

used CNN and Histogram of Oriented Gradients (HOG)

for feature extraction in signature verification. The

system merged the significant features from the HOG

method and the CNN method together. Then it tested

the extracted features using three classifiers: long short-

term memory (LSTM), SVM, and K-Nearest Neighbor

(KNN) on two datasets; CEDAR and UTSig. After

evaluating the system, it obtained 93.7% accuracy by

using LSTM, 94.1% by using SVM, 91.3% by using

KNN with CEDAR dataset, 95.4% by using LSTM,

95.2% by using SVM, and 92.7% by using KNN with

UTSig dataset.

It is obvious that there is a vast interest in using

convolutional neural networks for solving signature

verification problem, whether it is in feature extraction

only or in feature extraction and classification.

2.2 Methodology

2.2.1 Dataset

The CEDAR dataset was used for evaluating the

performance of the system because of its common use

by researchers and ease of access.

The CEDAR dataset contains 55 writers; each of them

has 24 genuine signatures and 24 skilled forged

signatures. Therefore, the dataset has entirely 1320

genuine signatures and 1320 skilled forged signatures in

a grayscale PNG format [11]. Figure 1 illustrates some

samples of genuine signatures for some writers from the

CEDAR dataset and their opposite skilled forged

signatures for those writers.

Fig. 1. Some samples from the CEDAR dataset. On the right, the genuine signatures of

two writers (two signatures for each one) and on the left, the skilled forged signatures of

that writers.

2.2.2 Preprocessing of Dataset

Data preprocessing is a very important phase in a

handwritten signature verification system because it

improves the signature image, removes unimportant

influences, and reduces the computational time

therefore it affects the accuracy. The preprocessing

steps are ordered as follows:

Binarization and background elimination

The Otsu thresholding method is used here to convert

the grayscale images to binary. Besides, the background

is removed by converting it to black (has zero pixel

value) and the signature to white (has 255 pixel value).

Noise removal

The median filter is used to remove the noise from the

images for enhancing them, whereas for every pixel in

the input image, it produces an output pixel that

contains the median value of 3 x 3 neighborhoods

around it.

Thinning

A binary image was converted to thin by applying a

specific morphological operation to it.

229 International Journal of Theoretical and Applied Research, 2023, 2(2)

Cropping

The bounding box of the signature was detected and the

other black pixels were cut out of the images, leaving

only the binarized signature.

Resizing

All images in the dataset were entered into the model

with a fixed size of 128 x 128.

The result of each step in preprocessing is illustrated in

Figure 2.

Fig. 2. Results of preprocessing. (a) Original image in grayscale, (b) after binarization

and background elimination, (c) after using median filter, (d) after thinning, and (e)

after cropping.

2.2.3 Feature Extraction and Classification

Our models are based on writer-dependent (WD)

scenario, so there is a classifier for verifying every

writer in the system. The use of CNN for extracting

features from the training dataset is focused on here. A

CNN model consists of three main layers: convolutional

layers, pooling layers, and fully connected layers.

The convolutional layer operates the convolution filters

on the input images to produce the feature maps. These

feature maps that are created by the convolution filters

are processed through the activation function before

yielding the output. When going deeper into

convolutional layers to the last one, we find that the

produced feature maps describe parts of shapes and

objects in the image. The pooling layer decreases the

dimension of the image where it merges neighboring

pixels of a specific area in the image into a single

representative value [22]. The fully connected layer

comes after several convolutional and pooling layers; it

may be one or more that aim to perform high-level

reasoning. It takes all the neurons in the previous layer

and connects them to all the neurons in the current layer

to collect all information. The feature extraction

operation is done by convolutional and pooling layers,

while the classification operation is done by fully

connected layers with a softmax activation function for

multiclass classification or a sigmoid activation

function for binary classification [23].

In this paper, three different models that have CNN as a

feature extractor are applied, and the results of them are

compared. The first model is the same model as in ref

[12], but it is applied here on another dataset (CEDAR

dataset). The other two models are proposed here and

based on the first model, with some differences. The

description of each of the three models is illustrated as

follows:

1- CNN model [12]

The first model that is used here is built on the model in

[12], but it is applied to another dataset. The CNN

technique is used for feature extraction and verification

because of its wide success in solving several image

classification problems. The CNN model in [12] has

five convolutional layers, two max-pooling layers, three

fully connected layers, and two dropout layers. Every

convolutional layer is supported by a zero-padding

layer. Each convolutional layer and fully connected

layer (except the last fully connected layer) are attached

by the Rectified Linear Unit (ReLU) activation

function. The first and second fully connected layers are

followed by two dropout layers with the 0.5 parameter.

The last fully connected layer is supported by a softmax

activation function with two outputs. The input layer,

with a size of 128 x 128, is connected to the first

convolutional layer, which has 32 filters; thus it

generates 32 feature maps. The feature maps are fed to

the Rectified Linear Unit (ReLU) activation function

before yielding the output, then the output of the

activation function is fed to the next layer, and so on.

All convolutional layers have a kernel size of 3 x 3.

Only the second and fifth convolutional layers are

followed by max-pooling layers that have a size of 3 x 3

with a stride size of 2 x 2. Table 1 illustrates the details

of the layers in this model of CNN. Because we have

Al-banhawy et al. 230

two outputs, the categorical cross-entropy loss function

is used to evaluate how good the model is; a lower loss

means better performance. The training of the model

was performed using the Adam optimizer with a 10-4

learning rate and a number of epochs = 60.

Table 1. The architecture of CNN of the first model [12].

Layer Size Other Parameters

Input 128 × 128 × 3

Convolution(C1)+ ReLU 32 × 3 × 3 Stride = 1 , padding = 1

Convolution(C2)+ ReLU 64 × 3 × 3 Stride = 1 , padding = 1

MaxPooling 64 × 3 × 3 Stride = 2

Convolution(C3)+ ReLU 128 × 3 × 3 Stride = 1 , padding = 1

Convolution(C4)+ ReLU 64 × 3 × 3 Stride = 1 , padding = 1

Convolution(C5)+ ReLU 128 × 3 × 3 Stride = 1 , padding = 1

MaxPooling 128 × 3 × 3 Stride = 2

Fully Connected(F1)+ ReLU+ Dropout 256

Fully Connected(F2)+ ReLU+ Dropout 256

Fully Connected(F3) + Softmax 2

2- Proposed Model 1 (CNN & SVM)

The first proposed model is built on using the same

CNN as before (without the last fully connected layer)

for feature extraction and SVM for classification

because of its effective performance in classification

problems, as reported in [8, 11, 18-21]. The feature

vector that is produced from CNN is fed to the SVM

classifier to verify the genuine and forged signatures.

The SVM is a significant and simple classifier. Support

Vector Machine has two types: linear SVM and non-

linear SVM. Linear SVM finds the best hyperplane that

separates classes linearly. Non-linear SVM uses kernels

to transform the nonlinear data into a higher

dimensional space that can be separated linearly. This

model applied a two-class classification of SVM (with a

linear kernel) where there are two outputs (genuine,

forged) then a squared hinge loss function was used

here. The Adam optimizer with a 10-4 learning rate is

used for training the model with a number of epochs =

60.

3- Proposed Model 2 (CNN with Sigmoid)

The second proposed model is built on using CNN for

feature extraction and verification. This CNN model has

five convolutional layers, three max-pooling layers,

three fully connected layers and two dropout layers. It

differs from the first CNN model by the following:

1. Increasing the kernel size of the first convolutional

layer to 11 x 11.

2. Adding one more max-pooling layer after the

fourth convolutional layer.

3. The last fully connected layer is supported by a

sigmoid activation function with one output;

therefore, a binary cross-entropy loss function was

used.

Each convolutional layer and fully connected layer,

except the last fully connected layer, are attached by the

ReLU activation function. The first and second fully

connected layers are followed by two dropout layers

with the 0.5 parameter. The training of the model was

performed using the Adam optimizer with a 10-4

learning rate and 5-fold cross-validation with a number

of epochs = 40 for each fold. Table 2 displays the

details of layers in this model of CNN.

Table 2. The architecture of improved CNN of the third model.

Layer Size Other Parameters

Input 128 × 128 × 3

Convolution(C1)+ ReLU 32 × 11 × 11 Stride = 1 , padding = 1

Convolution(C2)+ ReLU 64 × 3 × 3 Stride = 1 , padding = 1

MaxPooling 64 × 3 × 3 Stride = 2

Convolution(C3)+ ReLU 128 × 3 × 3 Stride = 1 , padding = 1

Convolution(C4)+ ReLU 64 × 3 × 3 Stride = 1 , padding = 1

MaxPooling 64 × 3 × 3 Stride = 2

Convolution(C5)+ ReLU 128 × 3 × 3 Stride = 1 , padding = 1

MaxPooling 128 × 3 × 3 Stride = 2

Fully Connected(F1)+ ReLU+ Dropout 256

Fully Connected(F2)+ ReLU+ Dropout 256

Fully Connected(F3) + sigmoid 1

231 International Journal of Theoretical and Applied Research, 2023, 2(2)

3. Results and Discussion

For measuring the performance of the system, the

accuracy is calculated. It is defined as the ratio of the

number of correctly verified samples to the total

number of test samples, as in Equation 1. In general,

higher accuracy indicates better performance.

 𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
× 100 (1)

The first model was trained on 22 samples for each

writer by taking 20 samples for testing, distributed

between two classes (10 genuine, 10 forged), before

training and the rest of 28 samples were used for

training and validation with 4:1 ratio. The number of

epochs was set to 60. The Adam optimizer with a 10-4

learning rate was used for training after many attempts

to find the appropriate learning rate. This model

achieved 93.18% accuracy, which is considered an

impressive result despite the simplicity of the model in

addition to the difficulty of identifying skillful forgery.

The second model (proposed model 1) gave a worse

performance than the first model by using the same

ratio for training and testing as before, which may refer

to the fact that the CNN works better with a large

number of samples for training, that is, 11 genuine and

11 forged signatures for each writer.

The third model (proposed model 2) achieved better

performance by increasing the kernel size of the first

convolutional layer to 11 x 11 to recognize more

information from the input image and adding one more

max-pooling layer after the fourth convolutional layer.

The number of samples for testing was reduced to 8

distributed between two classes (genuine, forged)

before training, and the rest of 40 samples were used for

training and validation using 5-fold cross-validation.

The number of epochs was set to 40 for each fold and

the training was completed after 200 epochs. As we are

dealing with two classes here (genuine and forged), a

sigmoid activation function was used in the last fully

connected layer to make a binary classification with one

output. The sigmoid function gives an output value

between 0 and 1, which means that the signature is

genuine if the output is bigger than 0.5, and it is forged

if the output is less than 0.5. The obtained results for the

three models on the CEDAR dataset are given in Table

3.

After training and testing the model, it is clear that the

preprocessing steps are very important for enhancing

the performance of the system. Therefore, if the

researcher in reference [12] had applied the important

steps of preprocessing on the GPDS synthetic signature

dataset before training the model, he would have

achieved more than 75% success.

Increasing the number of samples for training to 32 did

not improve the system much because the number of

samples was large in the beginning. The system did not

need a large number of epochs because the training fit

early, as illustrated in Figure 3. Therefore, the number

of epochs was reduced to 40 for each fold.

Table 3. The obtained results on the CEDAR dataset for the three models.

System Feature extraction classifier Number of samples per writer Accuracy

CNN model [12] CNN CNN 11 genuine, 11 forged 93.18%

Proposed Model 1 (CNN & SVM) CNN SVM 11 genuine, 11 forged 92.77%

Proposed Model 2 (CNN with Sigmoid) CNN CNN 16 genuine, 16 forged 94.73 %

Fig. 3. (a) Graph for training and validation accuracy, (b) Graph for training and validation loss.

Al-banhawy et al. 232

In CNN, not only the number of convolutional layers

and the number of filters in each of them are important,

but also the kernel size in each convolutional layer and

the number of max-pooling layers. Increasing the kernel

size of the first convolutional layer to 11 x 11, enhances

the performance in less number of epochs, but it takes

more time for each epochs, so we added one more max-

pooling layer after the fourth convolutional layer. The

CNN achieved comparable performance in feature

extraction, but it needs more samples for training. The

number of samples is very substantial and highly

influential, where the higher number of samples gives

better performance of the system, but it has to be large

enough to show its effectiveness to enhance the

performance of the system.

It is obvious that we can get good performance from a

simple model of CNN supported by enhanced images

that have been preprocessed by the main steps of

preprocessing. The deep CNN models, as in references

[14] and [15], are not essential for effective

performance. Jahandad et al. [14] achieved better

accuracy (83%) on the GPDS dataset by using the

model with 22 layers and not the model with 42 layers.

Hung et al. [15] obtained a good performance on the

Bengali dataset by using a model of 71 layers, but both

[14] and [15] need more computations, whereas more

layers mean more complexity and more computational

time. We achieved 94.73% accuracy on the CEDAR

dataset by using a model composed of 13 layers.

Gideon et al. [13] acquired an impressive performance

(98.23% validation accuracy) on their own dataset by

using a simple CNN model that contains 8 layers, but

they had a large number of samples of each writer

(1000 genuine and 1000 forged) and used 0.8 of them

for training.

It is noted that using both genuine and forged signatures

for training improves the performance of the system.

Jain et al. [2] trained their system on genuine signatures

only and achieved perfect performance when testing the

system on random forgeries, but it was not good enough

when it was tested on skilled forgeries (79.32%, 83.2%,

76.03%, and 83.5 for MCYT-100, GPDS300, BHSig

Bengali and Hindi, respectively) by using an ANN

classifier.

When comparing our method with other methods that

used the same dataset, our method obtained better

performance than Kumar et al. [7], which achieved

91.67% accuracy by using a multilayer perceptron

classifier, and Alsuhimat et al. [11], which performed

94.1% accuracy by using an additional feature extractor

with CNN for feature extraction and SVM for

classification. However, Alsuhimat et al. [11]

performed better when matching with our second model

that used SVM for classification, because they used an

additional feature extractor with CNN. Bhunia et al. [8]

attained an outstanding performance (1.64 AER), but

they used another metric for measuring the performance

of the system that does not allow us to compare with

them.

4. Conclusion

The offline handwritten signature verification is one of

the hardest challenges in recent years. The deep

learning method based on CNN architecture has been

achieved wide success in the image classification field,

so it was applied here to solve signature verification

problem. The CNN model was trained as writer-

dependent for extracting features and classifying the

queried signatures as genuine or forged. The obtained

results indicated that CNN succeeded in extracting

features from signatures and gave better performance

than SVM in classification. The preprocessing step is

very important and enhances the performance of the

system because it removes noise and external effects

that are not related to the signature itself. The success of

signature verification will increase if the CNN is

combined with supplementary feature extractors.

References

1. Hafemann LG, Sabourin R, Oliveira LS. Offline

handwritten signature verification—literature

review. In2017 seventh international conference

on image processing theory, tools and applications

(IPTA). IEEE. (2017) 1-8.

https://doi.org/10.1109/IPTA.2017.8310112.

2. Jain A, Singh SK, Singh KP. Signature

verification using geometrical features and

artificial neural network classifier. Neural

Computing and Applications. 33(2021) 6999-

7010. https://doi.org/10.1007/s00521-020-05473-

7.

3. Al-Omari YM, Abdullah SN, Omar K. State-of-

the-art in offline signature verification system.

In2011 International Conference on Pattern

Analysis and Intelligence Robotics. IEEE. 1(2011)

59-64.

https://doi.org/10.1109/ICPAIR.2011.5976912.

4. Mosaher QS, Hasan M. Offline handwritten

signature recognition using deep convolution

neural network. European Journal of Engineering

and Technology Research. 7(4)(2022) 44-47.

https://doi.org/10.24018/ejeng.2022.7.4.2851.

5. Al-banhawy NH, Mohsen H, Ghali NI. Signature

identification and verification systems: a

comparative study on the online and offline

techniques. Future Computing and Informatics

Journal. 5(1)(2020) 3.

http://doi.org/10.54623/fue.fcij.5.1.3.

6. Serdouk Y, Nemmour H, Chibani Y. Artificial

Immune Recognition System for Offline

Handwritten Signature Verification. In:
Bhattacharyya S, Mukherjee A, Pan I, Dutta P,

Bhaumik AK, (Eds). Hybrid Intelligent

Techniques for Pattern Analysis and

Understanding. CRC Press. New York, 2017, pp.

https://doi.org/10.1109/IPTA.2017.8310112
https://doi.org/10.1007/s00521-020-05473-7
https://doi.org/10.1007/s00521-020-05473-7
https://doi.org/10.1109/ICPAIR.2011.5976912
https://doi.org/10.24018/ejeng.2022.7.4.2851
http://doi.org/10.54623/fue.fcij.5.1.3

233 International Journal of Theoretical and Applied Research, 2023, 2(2)

49-68. http://dx.doi.org/10.1201/9781315154152-

3.

7. Kumar R, Sharma JD, Chanda B. Writer-

independent off-line signature verification using

surroundedness feature. Pattern recognition letters.

33(3)(2012) 301-308.
https://doi.org/10.1016/j.patrec.2011.10.009.

8. Bhunia AK, Alaei A, Roy PP. Signature

verification approach using fusion of hybrid

texture features. Neural Computing and

Applications. 31(2019) 8737-8748.
https://doi.org/10.1007/s00521-019-04220-x.

9. Ahmed SF, Alam MS, Hassan M, et al. Deep

learning modelling techniques: current progress,

applications, advantages, and challenges. Artificial

Intelligence Review. 56(2023) 13521–13617.

https://doi.org/10.1007/s10462-023-10466-8.

10. Foroozandeh A, Hemmat AA, Rabbani H. Offline

handwritten signature verification and recognition

based on deep transfer learning. In 2020

International Conference on Machine Vision and

Image Processing (MVIP). IEEE. (2020) 1-7.
https://doi.org/10.1109/MVIP49855.2020.918748

1.

11. Alsuhimat FM, Mohamad FS. A Hybrid Method

of Feature Extraction for Signatures Verification

Using CNN and HOG a Multi-Classification

Approach. IEEE Access. 11(2023) 21873-21882.

https://doi.org/10.1109/ACCESS.2023.3252022.

12. Yapici MM, Tekerek A, Topaloglu N.

Convolutional neural network based offline

signature verification application. In 2018

International Congress on Big Data, Deep

Learning and Fighting Cyber Terrorism

(IBIGDELFT). IEEE. (2018) 30-34.

https://doi.org/10.1109/IBIGDELFT.2018.862529

0.

13. Gideon SJ, Kandulna A, Kujur AA, Diana A,

Raimond K. Handwritten signature forgery

detection using convolutional neural networks.

Procedia computer science. 143(2018) 978-987.

https://doi.org/10.1016/j.procs.2018.10.336.

14. Jahandad, Sam SM, Kamardin K, Sjarif NN,

Mohamed N. Offline Signature Verification using

Deep Learning Convolutional Neural Network

(CNN) Architectures GoogLeNet Inception-v1

and Inception-v3. Procedia Computer Science.

161(2019) 475-483.

https://doi.org/10.1016/j.procs.2019.11.147.

15. Hung PD, Bach PS, Vinh BT, Tien NH, Diep VT.

Offline handwritten signature forgery verification

using deep learning methods. In: Zhang YD,

Senjyu T, So-In C, Joshi A. (Eds). Smart Trends in

Computing and Communications. Springer Nature

Singapore. Singapore. 2022 pp. 75-84.
https://doi.org/10.1007/978-981-16-9967-2_8.

16. Dey S, Dutta A, Toledo JI, Ghosh SK, Lladós J,

Pal U. Signet: Convolutional siamese network for

writer independent offline signature verification.

arXiv preprint arXiv:1707.02131. (2017).

https://doi.org/10.48550/arXiv.1707.02131.

17. Lopes JA, Baptista B, Lavado N, Mendes M.

Offline handwritten signature verification using

deep neural networks. Energies. 15(20)(2022)

7611. https://doi.org/10.3390/en15207611.

18. Vohra K. Signature verification using support

vector machine and convolution neural network.

Turkish Journal of Computer and Mathematics

Education (TURCOMAT). 12(1S)(2021) 80-89.

https://doi.org/10.17762/turcomat.v12i1S.1564.

19. Foroozandeh A, Hemmat AA, Rabbani H. Offline

handwritten signature verification based on circlet

transform and statistical features. In 2020

International Conference on Machine Vision and

Image Processing (MVIP). IEEE. (2020) 1-5.

https://doi.org/10.1109/MVIP49855.2020.911690

9.

20. Batool FE, Attique M, Sharif M, et al. Offline

signature verification system: a novel technique of

fusion of GLCM and geometric features using

SVM. Multimed Tools Appl. (2020) 1-20.

https://doi.org/10.1007/s11042-020-08851-4.

21. Ajij M, Pratihar S, Nayak SR, Hanne T, Roy DS.

Off-line signature verification using elementary

combinations of directional codes from boundary

pixels. Neural Computing and Applications.

(2021) 1-18. https://doi.org/10.1007/s00521-021-

05854-6.

22. [22] Kim P. Convolutional Neural Network. In:

MATLAB Deep Learning. Apress, Berkeley, CA.

2017. pp 121–147. https://doi.org/10.1007/978-1-

4842-2845-6_6.

23. Gu J, Wang Z, Kuen J, et al. Recent advances in

convolutional neural networks. Pattern

recognition. 77(2018) 354-377.
https://doi.org/10.1016/j.patcog.2017.10.013

http://dx.doi.org/10.1201/9781315154152-3
http://dx.doi.org/10.1201/9781315154152-3
https://doi.org/10.1016/j.patrec.2011.10.009
https://doi.org/10.1007/s00521-019-04220-x
https://doi.org/10.1007/s10462-023-10466-8
https://doi.org/10.1109/MVIP49855.2020.9187481
https://doi.org/10.1109/MVIP49855.2020.9187481
https://doi.org/10.1109/ACCESS.2023.3252022
https://doi.org/10.1109/IBIGDELFT.2018.8625290
https://doi.org/10.1109/IBIGDELFT.2018.8625290
https://doi.org/10.1016/j.procs.2018.10.336
https://doi.org/10.1016/j.procs.2019.11.147
https://doi.org/10.1007/978-981-16-9967-2_8
https://doi.org/10.48550/arXiv.1707.02131
https://doi.org/10.3390/en15207611
https://doi.org/10.17762/turcomat.v12i1S.1564
https://doi.org/10.1109/MVIP49855.2020.9116909
https://doi.org/10.1109/MVIP49855.2020.9116909
https://doi.org/10.1007/s11042-020-08851-4
https://doi.org/10.1007/s00521-021-05854-6
https://doi.org/10.1007/s00521-021-05854-6
https://doi.org/10.1007/978-1-4842-2845-6_6
https://doi.org/10.1007/978-1-4842-2845-6_6
https://doi.org/10.1016/j.patcog.2017.10.013

