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One of the most challenging biometric authentication problems in recent years that we 

experience in daily life is signature verification. Signature verification systems are 

classified into two main approaches: offline systems and online systems. The offline 

signature verification systems are more difficult than the online systems since online 

systems have further information, such as the velocity of writing, motion style, and pen 

pressure, which allow for extracting more features. This paper presents a deep learning 

method based on using the convolutional neural network (CNN) model for solving the 

offline signature verification problem to prevent the process of faking signatures that 

thieves practice. The CNN model was applied for extracting features and classifying 

whether the signature is genuine or forged. Our proposed method succeeded in 

achieving an accuracy of 94.73% on the CEDAR dataset by using two types of 

signatures: genuine signatures and skilled forged signatures to test the performance of 

the system, which indicates that the method was effective and it can be supported by 

more feature extractors to get better results. 

Keywords 

 

Signature analysis 

Signature verification  

Deep learning  

Convolutional Neural 

Network 
 

Graphical abstract 
 

 

∗ Corresponding author 

E-mail address: nehalhamdy2017@gmail.com 

 DOI: 10.21608/IJTAR.2023.205346.1051 

Special issue "selected papers from the International Annual Conference on Basic and Applied Science (IACBAS-2023)"  

https://ijtar.journals.ekb.eg/
mailto:nehalhamdy2017@gmail.com


Al-banhawy et al.      226 

1. Introduction 

One of the most commonly used techniques to 

determine the identity of individuals that we experience 

in our daily lives is handwritten signature analysis, 

particularly in banking systems, financial applications, 

administrative applications, and security. Individuals 

can be authenticated using two main types of 

characteristics: physiological and behavioral. The 

physiological characteristics include face, iris, 

fingerprint, and DNA. While behavioral characteristics 

include handwritten signatures and gait, a signature is 

still the most reliable way for authentication in many 

financial transactions because its acquisition process is 

simple and it requires less effort. However, this study is 

considered one of the most difficult challenges because 

the signatures of the same person may be affected by 

the person's situation at different times and are not 

necessarily similar [1, 2]. 

 A handwritten signature verification system is 

used to verify the authenticity of individuals 

automatically by their signatures. Therefore, the 

performance of this system is measured by its ability to 

classify the genuine signatures and the forged 

signatures correctly. Forgery is categorized according to 

its similarity to the genuine signature into three main 

types: random forgery, simple forgery (unskilled), and 

skilled forgery. In the case of random forgery, the 

forger does not have any information about the 

signatory's name or the shape of his signature and he 

may use his or her own signature. In such a case, the 

forger's signature shape is entirely different from the 

original signature. In the case of simple forgery, the 

forger knows only the signatory's name with no 

information about the shape of his signature. In such a 

case, the forger’s signature shape might be similar to 

the signatory's original signature. In a skilled forgery 

case, the forger knows both the signatory’s name and 

signature shape with some practice to make a good 

faking of the signatory’s signature. It is difficult to 

verify this kind of forgery because of its high similarity 

to the signatory's signature [3, 4]. Figure 1 illustrates 

some samples of genuine signatures for some writers 

and how the skilled forged signatures for them are 

similar to the genuine signatures. 

 The systems of signature verification are 

divided into two main approaches: offline/static systems 

and online /dynamic systems. As for offline systems, a 

signature is scanned or captured from a document such 

as a passport or a bank check as an image, and then the 

system reads that image of the signature and extracts 

features from it. On the other hand, the online systems 

use devices such as smartphones, tablets, and electronic 

pads to capture more information such as velocity of 

writing, motion style, and pen pressure, while the user 

is entering his signature, which enables the system to 

extract more features [3, 5]. 

The signature verification system has two basic 

scenarios when dealing with users: writer (user) 

independent (WI) and writer (user) dependent (WD). In 

writer-independent, one model is trained for all writers 

and extracts a similarity/dissimilarity vector then uses it 

for comparing the questioned signature with reference 

signatures. Most researchers prefer this method because 

it does not require retraining the system when a new 

writer is added, but it needs large enough data to 

perform well. In writer-dependent, there is one specific 

model for each writer that is trained on his signatures 

and is responsible for verifying them. When adding a 

new writer to the system, the system needs to be trained 

on it [6].  

 Every handwritten signature verification 

system includes three primary stages, preprocessing, 

feature extraction, and classification. Signature features 

represent properties that can be detected from the entire 

line path to describe every signature as a vector of 

values, which allows to discriminate between the 

signatures of different writers [5]. Feature extractors 

can be classified as handcrafted feature extractors or 

learning feature representations from row data. 

Handcrafted feature extractors are widely used for 

signature verification [2, 7, 8], but it need human 

experts, extensive domain understanding, and more 

time when dealing with huge datasets. With the 

breakthrough in artificial intelligence and the 

appearance of deep learning techniques, a revolution 

has occurred in the performance of automatic feature 

extraction systems because of their ability to learn more 

meaningful features from data by themselves effectively 

and handle a large and complex dataset in less time [9]. 

Signature verification systems that are based on deep 

learning methods have achieved great advancement in 

recent years, especially the convolutional neural 

network (CNN) [10]. CNNs are currently supposed to 

be the most extensively used deep learning architectures 

for learning features from images because of their 

various successes in different fields, including pattern 

recognition and image classification [11]. 

 The proposed models of CNN differ according 

to the number of convolutional layers, filters, kernel 

size, max-pooling layers, and fully connected layers. 

Some researchers used simple models of CNN to solve 

the signature verification problem, but either they did 

not achieve enough success as in [12] or they achieved 

successful performance by using a large number of 

samples for training (more than 750 samples for each 

signer) as in [13]. Some researchers resorted to using 

common CNN models with a large number of layers, as 

in [14] that used two deep models of CNN (one with 22 

layers and the other model with 42 layers) and obtained 

noticeable performance but required more computations 

and more time. Some researchers used pre-trained 

models of CNN instead of building a new deep CNN 

model to make it capable of extracting a high feature 

representation of the images in addition to learning the 

significant features from the signature images in the 

new dataset, as in [10] and [15]. 

 For the classification stage, classifiers like 

Euclidean distance [16], Neural Network (NN) [2, 7, 

12, 13 and 17], Support Vector Machine (SVM) [7, 8, 
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11, 18-21] and K- nearest neighbor (K-NN) [11 and 19] 

are widely used in signature verification problem, but 

NN and SVM are widely used as a result of their superb 

performance compared to the rest. 

Since the use of signature verification systems is 

essential in many organizations, such as banks, it 

requires speed as well as accuracy and secrecy. 

Although deep learning proved its success in signature 

verification problem solving, deeper models need 

essential computational resources like a powerful GPU 

and large memory that may be highly expensive and 

time-consuming. Therefore, the objective of our paper 

is to present a simple and effective offline signature 

verification system based on using important 

preprocessing steps for signature images and a simple 

CNN model for feature extraction and classification that 

can verify genuine and forged signatures automatically 

in less time, even though the forgery is highly skilled. 

The rest of the paper is ordered as follows: related 

works, the used dataset, the preprocessing steps of it, 

and the proposed models of CNN are presented in 

Section 2. The results and discussion are illustrated in 

Section 3. Finally, the conclusion is explained in 

Section 4.  

 
 

2. Materials and Methods 

The offline handwritten signature verification system 

includes three primary stages: preprocessing, feature 

extraction, and classification. The researchers proposed 

different techniques to perform feature extraction and 

classification stages; we will summarize some of them 

in the following subsection.  

     2.1 Related works 

Over the last years, many researchers have proposed 

several systems to solve the signature verification 

problem due to its importance and difficulty. Some of 

the handcrafted feature extraction methods that are used 

in signature verification systems will be outlined first, 

and then learning features models will be presented.  

Kumar et al. [7] proposed a WI offline signature 

verification schema by extracting a set of features that 

is based on using the surroundedness property of a 

signature, which represents the shape and texture 

attributes of the signature, by using two classifiers: 

support vector machine and multilayer perceptron, on 

two datasets: GPDS300 and CEDAR datasets. The best 

result was achieved by using a multilayer perceptron, 

with 86.24% accuracy for the GPDS300 dataset and 

91.67% accuracy for the CEDAR dataset.  

Bhunia et al. [8] proposed a WD signature verification 

method that used discrete wavelet transform (DWT) 

and local quantized patterns (LQP) for extracting 

texture features from signature images. They used one-

class support vector machines (SVMs) for classification 

by considering only genuine signatures for training. 

Four offline datasets were used to test the system: 

GPDS-300, MCYT, BHSig-260, and CEDAR datasets 

that achieved Average Error Rate (AER) results as 

follows: 4.18, 6.10, 10.91, and 1.64, respectively.  

Jain et al. [2] proposed a signature verification 

methodology based on extracting geometrical features 

like center, connected components, and isolated points 

from each signature image. An artificial neural network 

(ANN) was used for classification and was tested on 

MCYT-100, MCYT-75, GPDS-4000, BHSig260, and 

CVBLSig datasets. This model was trained on genuine 

signatures only and all datasets were tested on random 

forgeries with accuracy of 97.36%, 97.33%, 92.32%, 

97.79%, 95.29%, 97.55%, and 83.38% for MCYT-100, 

MCYT-75, GPDS300, BHSig Bengali, BHSig Hindi, 

CVBLSig-V1 and CVBLSig-V2, respectively. Some 

datasets were tested on skilled forgeries too which 

achieved an accuracy of about 79.32%, 83.2%, 76.03%, 

and 83.5 for MCYT-100, GPDS300, BHSig Bengali, 

and Hindi, respectively. 

With the improvement in artificial intelligence and the 

appearance of deep learning techniques, the 

performance of automatic feature extraction systems 

has also improved. Signature verification systems that 

use deep learning have achieved great advancement 

recently [10]. Yapıcı et al. [12] proposed an offline 

system using a convolutional neural network (CNN). 

The CNN was used to perform feature extraction and 

classification separately for the WD scenario and WI 

scenario. The obtained results displayed that the WI 

scenario implemented 62.5% accuracy and the WD 

scenario implemented 75% accuracy when using the 

GPDS synthetic signature dataset that contains 

signatures of 4000 different writers. 

Gideon et al. [13] used CNN to extract features and 

classification for images of the dataset, which consists 

of 6000 signatures for 3 users, each of whom has 1000 

genuine and 1000 forged signatures. They separated the 

forged signatures from the genuine signatures for every 

user and considered each of them as a separate user 

resulting a dataset with 6 users. By using an 80-20 data 

split ratio, they achieved a training accuracy of 98.11% 

and a validation accuracy of 98.23%.  

Jahandad et al. [14] used two different models of deep 

convolutional neural network architectures called 

Inception-v1 (deep network with 22 layers) and 

Inception-v3 (with 42 layers deep) for extracting 

features and classifying genuine and skilled forged 

signatures. Signatures of 1000 users of the common 

GPDS dataset were used to evaluate the system. The 

best results were obtained by the Inception-v1 model 

when using only 20 users from the dataset. The results 

are 83% validation accuracy and 17% Equal Error Rate 

(EER) for Inception-v1, 75% validation accuracy and 

24% EER.  

Vohra et al. [18] discussed two models for solving the 

signature verification problem. The first model 

extracted the following features: histogram of gradient, 

aspect ratio, shape, contour area, bounding area, and 
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convex hull area, then used SVM as a classifier. The 

second model used CNN for feature extraction and 

classification. ICDAR Dutch dataset was used here, 

which has 320 signatures taken from 4 individuals plus 

80 signature images taken from four individuals. The 

SVM model obtained 86.39% accuracy and the CNN 

model obtained 83.78%.  

Hung et al. [15] presented an offline signature system 

that is based on using Siamese Triplet CNN for 

extracting features and a fully connected neural network 

for binary classification to verify the genuine and 

forged signatures automatically. The used model of 

CNN was the Xception model (with 71 layers), which is 

a pre-trained model on the ImageNet dataset, and then it 

was trained on both genuine and forged signatures of 

the Bengali dataset from BHSig260. The obtained 

results are 27.97 False Rejection Rate (FRR), 13.66 

False Acceptance Rate (FAR), and 14.18 EER with the 

use of random forgeries.  

Some researchers used a hybrid between CNN and 

another feature extractor for feature extraction. 

Alsuhimat et al. [11] presented a hybrid method that 

used CNN and Histogram of Oriented Gradients (HOG) 

for feature extraction in signature verification. The 

system merged the significant features from the HOG 

method and the CNN method together. Then it tested 

the extracted features using three classifiers: long short-

term memory (LSTM), SVM, and K-Nearest Neighbor 

(KNN) on two datasets; CEDAR and UTSig. After 

evaluating the system, it obtained 93.7% accuracy by 

using LSTM, 94.1% by using SVM, 91.3% by using 

KNN with CEDAR dataset, 95.4% by using LSTM, 

95.2% by using SVM, and 92.7% by using KNN with 

UTSig dataset. 

It is obvious that there is a vast interest in using 

convolutional neural networks for solving signature 

verification problem, whether it is in feature extraction 

only or in feature extraction and classification. 

2.2 Methodology  

2.2.1 Dataset  

The CEDAR dataset was used for evaluating the 

performance of the system because of its common use 

by researchers and ease of access. 

The CEDAR dataset contains 55 writers; each of them 

has 24 genuine signatures and 24 skilled forged 

signatures. Therefore, the dataset has entirely 1320 

genuine signatures and 1320 skilled forged signatures in 

a grayscale PNG format [11]. Figure 1 illustrates some 

samples of genuine signatures for some writers from the 

CEDAR dataset and their opposite skilled forged 

signatures for those writers. 

 

 

Fig. 1. Some samples from the CEDAR dataset. On the right, the genuine signatures of 

two writers (two signatures for each one) and on the left, the skilled forged signatures of 

that writers. 

2.2.2 Preprocessing of Dataset 

Data preprocessing is a very important phase in a 

handwritten signature verification system because it 

improves the signature image, removes unimportant 

influences, and reduces the computational time 

therefore it affects the accuracy. The preprocessing 

steps are ordered as follows: 

Binarization and background elimination 

The Otsu thresholding method is used here to convert 

the grayscale images to binary. Besides, the background 

is removed by converting it to black (has zero pixel 

value) and the signature to white (has 255 pixel value). 

Noise removal 

The median filter is used to remove the noise from the 

images for enhancing them, whereas for every pixel in 

the input image, it produces an output pixel that 

contains the median value of 3 x 3 neighborhoods 

around it. 

Thinning 

A binary image was converted to thin by applying a 

specific morphological operation to it. 
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Cropping  

The bounding box of the signature was detected and the 

other black pixels were cut out of the images, leaving 

only the binarized signature. 

Resizing  

All images in the dataset were entered into the model 

with a fixed size of 128 x 128. 

The result of each step in preprocessing is illustrated in 

Figure 2. 

 

Fig. 2. Results of preprocessing. (a) Original image in grayscale, (b) after binarization 

and background elimination, (c) after using median filter, (d) after thinning, and (e) 

after cropping. 

 

2.2.3 Feature Extraction and Classification  

Our models are based on writer-dependent (WD) 

scenario, so there is a classifier for verifying every 

writer in the system. The use of CNN for extracting 

features from the training dataset is focused on here. A 

CNN model consists of three main layers: convolutional 

layers, pooling layers, and fully connected layers.  

The convolutional layer operates the convolution filters 

on the input images to produce the feature maps. These 

feature maps that are created by the convolution filters 

are processed through the activation function before 

yielding the output. When going deeper into 

convolutional layers to the last one, we find that the 

produced feature maps describe parts of shapes and 

objects in the image. The pooling layer decreases the 

dimension of the image where it merges neighboring 

pixels of a specific area in the image into a single 

representative value [22]. The fully connected layer 

comes after several convolutional and pooling layers; it 

may be one or more that aim to perform high-level 

reasoning. It takes all the neurons in the previous layer 

and connects them to all the neurons in the current layer 

to collect all information. The feature extraction 

operation is done by convolutional and pooling layers, 

while the classification operation is done by fully 

connected layers with a softmax activation function for 

multiclass classification or a sigmoid activation 

function for binary classification [23]. 

In this paper, three different models that have CNN as a 

feature extractor are applied, and the results of them are 

compared. The first model is the same model as in ref 

[12], but it is applied here on another dataset (CEDAR 

dataset). The other two models are proposed here and 

based on the first model, with some differences. The 

description of each of the three models is illustrated as 

follows: 

1- CNN model [12] 

 

The first model that is used here is built on the model in 

[12], but it is applied to another dataset. The CNN 

technique is used for feature extraction and verification 

because of its wide success in solving several image 

classification problems. The CNN model in [12] has 

five convolutional layers, two max-pooling layers, three 

fully connected layers, and two dropout layers. Every 

convolutional layer is supported by a zero-padding 

layer. Each convolutional layer and fully connected 

layer (except the last fully connected layer) are attached 

by the Rectified Linear Unit (ReLU) activation 

function. The first and second fully connected layers are 

followed by two dropout layers with the 0.5 parameter. 

The last fully connected layer is supported by a softmax 

activation function with two outputs. The input layer, 

with a size of 128 x 128, is connected to the first 

convolutional layer, which has 32 filters; thus it 

generates 32 feature maps. The feature maps are fed to 

the Rectified Linear Unit (ReLU) activation function 

before yielding the output, then the output of the 

activation function is fed to the next layer, and so on. 

All convolutional layers have a kernel size of 3 x 3. 

Only the second and fifth convolutional layers are 

followed by max-pooling layers that have a size of 3 x 3 

with a stride size of 2 x 2. Table 1 illustrates the details 

of the layers in this model of CNN. Because we have 
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two outputs, the categorical cross-entropy loss function 

is used to evaluate how good the model is; a lower loss 

means better performance. The training of the model 

was performed using the Adam optimizer with a 10-4 

learning rate and a number of epochs = 60. 

 

Table 1. The architecture of CNN of the first model [12]. 

Layer Size Other Parameters 

Input 128 × 128 × 3  

Convolution(C1)+ ReLU 32 ×  3 ×  3 Stride = 1 , padding = 1 

Convolution(C2)+ ReLU 64  × 3 × 3 Stride = 1 , padding = 1 

MaxPooling 64 × 3 × 3 Stride = 2 

Convolution(C3)+ ReLU 128 × 3 × 3 Stride = 1 , padding = 1 

Convolution(C4)+ ReLU 64 × 3 × 3 Stride = 1 , padding = 1 

Convolution(C5)+ ReLU 128 × 3 × 3 Stride = 1 , padding = 1 

MaxPooling 128 × 3 × 3 Stride = 2 

Fully Connected(F1)+ ReLU+ Dropout 256  

Fully Connected(F2)+ ReLU+ Dropout 256  

Fully Connected(F3) + Softmax 2  

 
 

2- Proposed Model 1 (CNN & SVM) 

The first proposed model is built on using the same 

CNN as before (without the last fully connected layer) 

for feature extraction and SVM for classification 

because of its effective performance in classification 

problems, as reported in [8, 11, 18-21]. The feature 

vector that is produced from CNN is fed to the SVM 

classifier to verify the genuine and forged signatures. 

The SVM is a significant and simple classifier. Support 

Vector Machine has two types: linear SVM and non-

linear SVM. Linear SVM finds the best hyperplane that 

separates classes linearly. Non-linear SVM uses kernels 

to transform the nonlinear data into a higher 

dimensional space that can be separated linearly. This 

model applied a two-class classification of SVM (with a 

linear kernel) where there are two outputs (genuine, 

forged) then a squared hinge loss function was used 

here. The Adam optimizer with a 10-4 learning rate is 

used for training the model with a number of epochs = 

60.  

3- Proposed Model 2 (CNN with Sigmoid) 

The second proposed model is built on using CNN for 

feature extraction and verification. This CNN model has 

five convolutional layers, three max-pooling layers, 

three fully connected layers and two dropout layers. It 

differs from the first CNN model by the following: 

1. Increasing the kernel size of the first convolutional 

layer to 11 x 11.   

2. Adding one more max-pooling layer after the 

fourth convolutional layer.  

3. The last fully connected layer is supported by a 

sigmoid activation function with one output; 

therefore, a binary cross-entropy loss function was 

used. 

Each convolutional layer and fully connected layer, 

except the last fully connected layer, are attached by the 

ReLU activation function. The first and second fully 

connected layers are followed by two dropout layers 

with the 0.5 parameter. The training of the model was 

performed using the Adam optimizer with a 10-4 

learning rate and 5-fold cross-validation with a number 

of epochs = 40 for each fold. Table 2 displays the 

details of layers in this model of CNN. 

 

 

Table 2. The architecture of improved CNN of the third model.  

Layer Size Other Parameters 

Input 128 × 128 × 3  

Convolution(C1)+ ReLU 32 × 11 × 11 Stride = 1 , padding = 1 

Convolution(C2)+ ReLU 64 × 3 × 3 Stride = 1 , padding = 1 

MaxPooling 64 × 3 × 3 Stride = 2 

Convolution(C3)+ ReLU 128 × 3 × 3 Stride = 1 , padding = 1 

Convolution(C4)+ ReLU 64 × 3 × 3 Stride = 1 , padding = 1 

MaxPooling 64 × 3 × 3 Stride = 2 

Convolution(C5)+ ReLU 128 × 3 × 3 Stride = 1 , padding = 1 

MaxPooling 128 × 3 × 3 Stride = 2 

Fully Connected(F1)+ ReLU+ Dropout 256  

Fully Connected(F2)+ ReLU+ Dropout 256  

Fully Connected(F3) + sigmoid 1  
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3. Results and Discussion 

For measuring the performance of the system, the 

accuracy is calculated. It is defined as the ratio of the 

number of correctly verified samples to the total 

number of test samples, as in Equation 1. In general, 

higher accuracy indicates better performance. 

               𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
×  100                 (1) 

The first model was trained on 22 samples for each 

writer by taking 20 samples for testing, distributed 

between two classes (10 genuine, 10 forged), before 

training and the rest of 28 samples were used for 

training and validation with 4:1 ratio. The number of 

epochs was set to 60. The Adam optimizer with a 10-4 

learning rate was used for training after many attempts 

to find the appropriate learning rate. This model 

achieved 93.18% accuracy, which is considered an 

impressive result despite the simplicity of the model in 

addition to the difficulty of identifying skillful forgery. 

The second model (proposed model 1) gave a worse 

performance than the first model by using the same 

ratio for training and testing as before, which may refer 

to the fact that the CNN works better with a large 

number of samples for training, that is, 11 genuine and 

11 forged signatures for each writer.  

The third model (proposed model 2) achieved better 

performance by increasing the kernel size of the first 

convolutional layer to 11 x 11 to recognize more 

information from the input image and adding one more 

max-pooling layer after the fourth convolutional layer. 

The number of samples for testing was reduced to 8 

distributed between two classes (genuine, forged) 

before training, and the rest of 40 samples were used for 

training and validation using 5-fold cross-validation. 

The number of epochs was set to 40 for each fold and 

the training was completed after 200 epochs. As we are 

dealing with two classes here (genuine and forged), a 

sigmoid activation function was used in the last fully 

connected layer to make a binary classification with one 

output. The sigmoid function gives an output value 

between 0 and 1, which means that the signature is 

genuine if the output is bigger than 0.5, and it is forged 

if the output is less than 0.5. The obtained results for the 

three models on the CEDAR dataset are given in Table 

3. 

After training and testing the model, it is clear that the 

preprocessing steps are very important for enhancing 

the performance of the system. Therefore, if the 

researcher in reference [12] had applied the important 

steps of preprocessing on the GPDS synthetic signature 

dataset before training the model, he would have 

achieved more than 75% success. 

Increasing the number of samples for training to 32 did 

not improve the system much because the number of 

samples was large in the beginning. The system did not 

need a large number of epochs because the training fit 

early, as illustrated in Figure 3. Therefore, the number 

of epochs was reduced to 40 for each fold. 

 

Table 3. The obtained results on the CEDAR dataset for the three models. 

System Feature extraction  classifier Number of samples per writer Accuracy 

CNN model [12] CNN CNN 11 genuine, 11 forged 93.18% 

Proposed Model 1 (CNN & SVM) CNN SVM 11 genuine, 11 forged 92.77% 

Proposed Model 2 (CNN with Sigmoid) CNN CNN 16 genuine, 16 forged 94.73 % 

 

 

 

Fig. 3. (a) Graph for training and validation accuracy, (b) Graph for training and validation loss. 
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In CNN, not only the number of convolutional layers 

and the number of filters in each of them are important, 

but also the kernel size in each convolutional layer and 

the number of max-pooling layers. Increasing the kernel 

size of the first convolutional layer to 11 x 11, enhances 

the performance in less number of epochs, but it takes 

more time for each epochs, so we added one more max-

pooling layer after the fourth convolutional layer. The 

CNN achieved comparable performance in feature 

extraction, but it needs more samples for training. The 

number of samples is very substantial and highly 

influential, where the higher number of samples gives 

better performance of the system, but it has to be large 

enough to show its effectiveness to enhance the 

performance of the system. 

It is obvious that we can get good performance from a 

simple model of CNN supported by enhanced images 

that have been preprocessed by the main steps of 

preprocessing. The deep CNN models, as in references 

[14] and [15], are not essential for effective 

performance. Jahandad et al. [14] achieved better 

accuracy (83%) on the GPDS dataset by using the 

model with 22 layers and not the model with 42 layers. 

Hung et al. [15] obtained a good performance on the 

Bengali dataset by using a model of 71 layers, but both 

[14] and [15] need more computations, whereas more 

layers mean more complexity and more computational 

time. We achieved 94.73% accuracy on the CEDAR 

dataset by using a model composed of 13 layers. 

Gideon et al. [13] acquired an impressive performance 

(98.23% validation accuracy) on their own dataset by 

using a simple CNN model that contains 8 layers, but 

they had a large number of samples of each writer 

(1000 genuine and 1000 forged) and used 0.8 of them 

for training.  

It is noted that using both genuine and forged signatures 

for training improves the performance of the system. 

Jain et al. [2] trained their system on genuine signatures 

only and achieved perfect performance when testing the 

system on random forgeries, but it was not good enough 

when it was tested on skilled forgeries (79.32%, 83.2%, 

76.03%, and 83.5 for MCYT-100, GPDS300, BHSig 

Bengali and Hindi, respectively) by using an ANN 

classifier. 

When comparing our method with other methods that 

used the same dataset, our method obtained better 

performance than Kumar et al. [7], which achieved 

91.67% accuracy by using a multilayer perceptron 

classifier, and Alsuhimat et al. [11], which performed 

94.1% accuracy by using an additional feature extractor 

with CNN for feature extraction and SVM for 

classification. However, Alsuhimat et al. [11] 

performed better when matching with our second model 

that used SVM for classification, because they used an 

additional feature extractor with CNN. Bhunia et al. [8] 

attained an outstanding performance (1.64 AER), but 

they used another metric for measuring the performance 

of the system that does not allow us to compare with 

them. 

4. Conclusion 

The offline handwritten signature verification is one of 

the hardest challenges in recent years. The deep 

learning method based on CNN architecture has been 

achieved wide success in the image classification field, 

so it was applied here to solve signature verification 

problem. The CNN model was trained as writer-

dependent for extracting features and classifying the 

queried signatures as genuine or forged. The obtained 

results indicated that CNN succeeded in extracting 

features from signatures and gave better performance 

than SVM in classification. The preprocessing step is 

very important and enhances the performance of the 

system because it removes noise and external effects 

that are not related to the signature itself. The success of 

signature verification will increase if the CNN is 

combined with supplementary feature extractors. 
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