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Gas sensors are widely used to detect the presence of hazardous gases in our daily lives, 

and their accuracy is crucial for ensuring the safety of individuals and environments. Gas 

sensors are essential in a variety of applications, such as environmental monitoring, indus-

trial safety, and healthcare. These sensors are intended to detect and measure the presence 

of certain gases in their surroundings. Significant progress has been achieved in the devel-

opment of gas sensor technology in recent years, resulting in better sensitivity, selectivity, 

and miniaturization. In this paper, we propose an optimized deep-learning approach for gas 

sensor data analysis that improves gas prediction accuracy. The proposed approach in-

cludes advanced data preprocessing techniques, feature selection, and model optimization 

to increase gas prediction performance. The contribution of this research is the develop-

ment of a novel deep learning-based approach that optimizes the accuracy of gas prediction, 

making it more trustworthy and practical for real-world applications. The proposed method 

has significant implications for gas detection and can potentially save lives by providing 

early warning of dangerous gas levels. 

Keywords 

Gas Detection 

Deep Learning 

Optimization 

Prediction 

SVM 

Decision Tree 

Feature Selection. 

 

Graphical abstract 
 

 

 
 

 

  
 

 

Sensor Reading 
Data input 

Feature Selection 

D
ata sp

lit 

Test Train Apply Deep Learning  
Train data for  

epoch =200 

Optimization Al-

gorithm 
Evaluation 

Enhancement of the gas 

prediction     accuracy 

https://ijtar.journals.ekb.eg/


Ragab et al.   372 

 

1. Introduction 

Gas detection is an essential aspect of ensuring safety 

in various industrial and domestic environments. Gas 

sensors play a crucial role in detecting and identifying 

the presence of hazardous gases that pose a significant 

risk to human health and the surrounding environment. 

The detection of a specific gas or a group of gases in a 

mixture of gases is a tough task that requires extensive 

technological understanding. Various methodologies 

have been proposed to detect gas leakage, including 

chemical methods and advancements in interdisciplinary 

technologies [1]. In situations involving gas leakage, hu-

man intervention may not always be feasible due to the 

inherent hazards associated with these gases. Smoke 

emissions resulting from leaks can impair vision, and In-

dividuals with mobility restrictions must be evacuated 

immediately in the event of a fire or smoke. Inhaling 

these hazardous gases can cause dizziness, unconscious-

ness, and even mass disasters if not addressed immedi-

ately. Moreover, gas leaks in chemical plants offer a con-

siderable risk of explosion. Therefore, the timely detec-

tion of gas leaks and explosions is of utmost importance. 

To achieve this, there is a crucial need for advanced as-

sistive technology solutions that offer accurate and relia-

ble early detection capabilities. Detecting gas leaks 

promptly and with precision necessitates the employ-

ment of state-of-the-art procedures. It is also a challenge 

to detect specific gases or different gas mixtures, requir-

ing focused technological advancements. Existing meth-

ods for detecting mixed gases include the utilization of 

colorimetric tape, which provides a viable solution in 

certain cases. However, there is room for improvement 

in terms of accuracy and reliability [2]. Machine learning 

and deep learning algorithms are examples of artificial 

intelligence-based techniques that have shown promise 

in detecting gases and classifying them in recent years. 

In addition to chemical gas detection methods and ad-

vances in multidisciplinary technologies, the literature 

mentions the application of a variety of artificial intelli-

gence (AI)-based approaches. In past studies, several ma-

chine learning techniques, including support vector ma-

chine (SVM) algorithms, were proposed for gas identifi-

cation [3]. Khalaf [4] examines the development of an 

electronic nose (ENose) designed to fulfill two primary 

objectives: gas type identification and determination of 

purity, along with the estimation of component concen-

trations in a mixture of LPG gases (methane, hexane, or 

hydrogen) and sulfuric acid, which are frequently en-

countered within refineries.The ENose system comprises 

a total of 8 sensors. The proposed hardware-software sys-

tem leverages the principles of least squares for both 

classification and regression tasks. Initially, a training 

model utilizing the least squares approach is employed to 

instruct the system on discriminating between different 

gases and determining whether a gas sample is pure or a 

mixture. Subsequently, another training model is devel-

oped using least squares regression to estimate the con-

centrations of the identified gases. Abdul Majeed [5] pro-

posed the RF-based top-k highly weighted feature 

selection technique, which is based on random forest es-

timation (RF). This algorithm's major goal is to reduce 

the time overheads of various machine learning algo-

rithms (MLAs) while maintaining a sufficient degree of 

accuracy. To efficiently reduce the calculation time of 

MLAs, the suggested approach focuses on picking the 

top k most essential characteristics from a collection of 

N available features. This approach is particularly bene-

ficial when dealing with datasets that have a substantial 

number of features. The method quantifies the weights of 

each feature in the dataset using a random forest and em-

ploys the classification error rate as the criteria for fea-

ture selection. Optimal RF parameters are adapted, tak-

ing into account the data distribution and the number of 

features, to identify influential features with high predic-

tive power. Parag Narkhede [6] proposed a unique mul-

timodal AI-based fusion framework for reliable gas iden-

tification and detection has been developed. This para-

digm considers several modalities to satisfy the demand 

for accurate gas detection. Data was collected from four 

unique classes in study of two distinct gases: alcohol va-

por obtained from perfume, smoke from incense sticks, a 

blend of these gases, and a class indicating the lack of 

gas. A thermal camera was used to capture the thermal 

signature of the gases, while an array of seven gas sen-

sors was used to detect each specific gas. This study's da-

taset is unique, with 5200 samples that include both ther-

mal pictures and gas sensor sequences expressed as vec-

tors of size 1 * 7. This paper focuses on exploring the 

potential of assistive technology solutions for gas detec-

tion using gas sensors and deep learning algorithms to 

achieve higher accuracy and reliability in gas classifica-

tion. The proposed approach aims to contribute to the de-

velopment of more effective and efficient gas detection 

systems that can improve safety in various environments. 

In this work, we employed feature selection and deep 

learning algorithms for the classification of gas sensor 

data. Focused on selecting the most relevant features 

from the gas sensor measurements, which were then used 

as input for the deep learning algorithm. This approach 

allows for a more interpretable model and can reduce the 

risk of overfitting. 

This paper's key contribution is: 

• The application of an optimized deep learning ap-

proach to address the problem at hand. Specifically, 

we leverage the Adam optimizer, a popular and ef-

fective optimization algorithm, to enhance the per-

formance of our deep learning model. 

• Additionally, we incorporate feature selection tech-

niques to preprocess the data before feeding it into 

the deep learning model. By selecting relevant fea-

tures, we aim to reduce the dimensionality of the 

input and improve the efficiency and effectiveness 

of the model. 

• By combining the power of optimized deep learn-

ing with feature selection, our approach 
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demonstrates enhanced accuracy and efficiency in 

solving the problem. The optimized deep learning 

model, driven by the Adam optimizer drives the op-

timized deep learning model, enabling more effec-

tive training and learning from the data. Addition-

ally, feature selection ensures the utilization of only 

the most informative features, reducing noise and 

enhancing overall performance. 

The subsequent portions of this paper are organized as 

follows: Section 2 goes over the content and method. 

Section 3 focuses on the dataset that was used in our re-

search. Section 4 presents the experimental results, 

which compare the classification accuracy of several ma-

chine learning and deep learning algorithms. Finally, 

Section 5 gives concluding remarks that summarize the 

research's significant findings and contributions. 

2. Material and Method 

 This segment outlines the approaches we intend to uti-

lize in this paper as a preliminary measure for our system 

framework and experimentation setup. 

 

2.1.  Deep Learning and Adam Optimization 

Deep learning (DL), a subset of machine learning 

(ML), uses neural networks with multiple layers to model 

intricate data interactions. DL has gained attention for its 

outstanding results in image and audio recognition, nat-

ural language processing, and robotics. The neural net-

work architecture in DL comprises layers collaborating 

to learn from input data, process it, and provide an out-

put. Each layer consists of artificial neurons executing 

computations and sending data to the next layer, fully 

connected, with each connection assigned a weight de-

termining its strength. Artificial Neural Networks 

(ANNs), fundamental to most DL structures, are promi-

nent and typically include an input layer, an output layer, 

and one or more hidden layers [7]. The input layer intro-

duces data, while the output layers [8] and [9] produce 

the outcome. Hidden layers, representing the network's 

depth, learn the mapping between input and output using 

nonlinear activation functions such as Rectified Linear 

Unit (RELU) [10], soft plus, and soft sign. Traditional 

neural networks use stochastic gradient descent (SGD) 

for weight optimization, with various loss functions, in-

cluding cross-entropy [11], for estimating errors in clas-

sification tasks. DL requires a vast amount of data for 

proper training, posing a significant barrier in many ap-

plications. However, DL can learn data representations 

without explicit feature engineering, making it valuable 

for analyzing massive amounts of unstructured data. 

Adam (Adaptive Moment Estimation) [12] is an optimi-

zation algorithm combining AdaGrad and RMSProp ad-

vantages. It dynamically adjusts the learning rate during 

training, functioning as an adaptive learning rate optimi-

zation algorithm. Adam maintains a decaying average of 

past gradients and squared gradients to compute adaptive 

learning rates [13] for each parameter, including bias cor-

rection for biased initial estimates. The algorithm calcu-

lates the first and second moments of gradients to adjust 

hyperparameters like the learning rate for each weight in 

the network. The learning rate, generally predetermined 

before training and ranging from 0.0 to 1.0, makes Adam 

suitable for deep neural networks with large parameter 

spaces. In various deep learning challenges, Adam has 

demonstrated faster convergence and greater perfor-

mance than classical SGD. Hyperparameters in DL de-

signs, including batch size, dropout rate, and the total 

number of neurons in hidden levels, significantly influ-

ence network performance and are typically randomly 

assigned. Evaluation of these hyperparameter values oc-

curs through a validation set, with the dataset divided 

into three sections: training optimizes the network's pa-

rameters, the validation set adjusts hyperparameters and 

measures performance during training, and the test set 

evaluates performance after training. 

 

2.2. Feature Selection 

The process of discovering and selecting a subset of 

relevant features from a larger set of features to be uti-

lized in model training is known as feature selection. 

This process can be performed before splitting data into 

training and testing sets to prevent any data leakage from 

the test set into the training set. Performing feature selec-

tion [14] before splitting the data helps to ensure that the 

selected features are independent of the outcome variable 

and unbiased. This is because if feature selection is per-

formed after splitting the data, the selection process may 

be influenced by the test set, which could lead to overfit-

ting on the test set. Filter methods, wrapper methods, and 

embedding methods are examples of feature selection 

strategies. Filter methods assess and rank characteristics 

based on their connection with the outcome variable us-

ing statistical measurements. Wrapper approaches 

choose features by assessing the performance of a model 

trained on a subset of them. Embedded techniques pick 

features as part of the model training process, in which 

the model decides which characteristics to employ. In 

summary, performing feature selection before splitting 

the data can help ensure unbiased and independent fea-

ture selection and prevent any data leakage from the test 

set into the training set. 

 

2.3. Machine Learning and Supervised Techniques 

Machine Learning (ML), a subset of Artificial Intelli-

gence (AI), enables computer systems to learn and im-

prove without explicit programming. ML algorithms au-

tomatically learn patterns and relationships in data, mak-

ing predictions or decisions based on that learning. The 

ML process involves three stages: data preparation, 

model training, and evaluation. In the data preparation 

stage, data is cleaned, preprocessed, and transformed into 

a suitable format, involving feature selection or engineer-

ing for relevant input variables. In the model training 

stage, the ML algorithm applies to prepared data, learn-

ing patterns, and relationships, adjusting parameters to 

minimize the gap between predictions and actual output. 

Various ML algorithms, including supervised learning 

like Support Vector Machine (SVM) [15], unsupervised 

learning, and reinforcement learning, are applied. SVM 

is a well-known supervised ML technique utilized for 

classification or regression applications. It locates a hy-

perplane in the feature space to effectively divide various 

classes. Decision Tree [16], a popular technique for 
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predicting and categorizing tasks, has a flowchart-like 

structure. Internal nodes represent tests on attributes or 

features, branches represent test outcomes, and leaf 

nodes represent class labels or choices. Decision trees are 

widely employed due to their simplicity, interpretability, 

and ability to handle both categorical and numerical data. 

However, they may suffer from bias towards features 

with many values, biased trees due to class imbalance, 

and instability from small changes in data. Combining 

decision trees with other algorithms, such as random for-

ests or gradient boosting, improves performance. 

 

3. Dataset Description 

Gas detection is an important area of study with numer-

ous uses in industry, safety, and health. There has been a 

rise in interest in multimodal gas detection in recent 

years, which incorporates data from several sources such 

as sensors, pictures, and sounds. However, there is a scar-

city of high-quality multimodal gas detection datasets. 

This study included the MultimodalGasData dataset [7], 

a new dataset for gas detection and classification that 

combines sensor data and photos. Certain gases are de-

tected by gas sensors by turning them into electrical im-

pulses. Metal oxide semiconductor (MQ) technology-

based sensors are frequently chosen among the different 

types of gas sensors available due to their small size, 

quick response time, and extended lifespan. Each sensor 

is made up of a heating element that generates an output 

voltage proportional to the goal gas concentration. Table 

1 provides an overview of various sensors as well as the 

gases to which they are sensitive, which is useful infor-

mation for gas detection applications. The dataset has 

two sections: training and testing. There are 4480 

samples in the training set, 960 samples in the testing set, 

and 960 samples in the validation set. Multimodal-

GasData [2] gives simultaneous data from seven distinct 

gas sensors as well as photos from a thermal camera. 

Two different gases are considered, and four groups are 

created: no gas, perfume, smoke, and a blend of perfume 

and smoke. The dataset is gathered using seven distinct 

metal oxide gas sensors (MQ5, MQ135, MQ8, MQ6, 

MQ7, MQ3, and MQ2) and a thermal imaging camera 

(as stated in Table 1). The collection is made up of nu-

merical values from gas sensors and photos captured 

with a thermal camera. 

 

Table  1. Shows a list of gas sensors and sensitive 

gases. 

Sensors Gas of Sensitivity 

MQ5 Natural Gas, LPG 

MQ135 Air Quality (Benzene, Smoke) 

MQ8 Hydrogen Gas 

MQ6 Butane Gas, LPG 

MQ7 Carbon Monoxide 

MQ3 Alcohol, Ethanol, Smoke 

MQ2 Butane, Smoke, propane, LPG, Methane 

 
4. Proposed Model 

Figure 1 displays the gas sensor system, which con-

tains several gas sensors. This diagram depicts the net-

work's structure as well as the training procedures that 

were followed. The mechanisms depicted in the dia-

gram will be described in depth in subsequent sections. 

 
 

 

  

 

 

 

 

 

 

 

4.1. Gas Sensor Reading 

Gas sensors [21] are devices that detect and measure 

the concentration of different gases in the air. Various 

types of gas sensors, including MQ5, MQ135, MQ8, 

MQ6, MQ7, MQ3, and MQ2, were used in this study.. 

These sensors are highly sensitive to different types of 

gases such as methane, smoke, LPG, alcohol, butane, 

natural gas, carbon monoxide, and air quality, as outlined 

in Table 1. Each sensor has a unique sensitivity range and 

response time, and it can detect a specific gas or a range 

of gases. MQ2 and MQ5 sensors are commonly used for 

detecting LPG and natural gas, respectively, while MQ3 

and MQ7 sensors are commonly used for detecting alco-

hol and carbon monoxide, respectively. The MQ6 sensor 

is used for detecting liquefied petroleum gas (LPG), 

while the MQ8 sensor is commonly used for detecting 

hydrogen gas. Lastly, the MQ135 sensor is used for de-

tecting air quality and hazardous gases such as nitrogen 

dioxide, benzene, and carbon dioxide. The readings from 

these gas sensors are crucial for monitoring the air qual-

ity [22] and detecting the presence of harmful gases in 

various settings such as homes, industries, and public 

places. The sensors provide real-time data on gas 
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concentration levels, which can be used for further anal-

ysis and decision-making. 

 

4.2. Feature Selection from Gas Sensor Measure-

ments  

In this dataset, feature selection [23] was performed to 

identify the most relevant features that contribute to the 

classification of gas readings. 

Before splitting the dataset into train and test sets, fea-

ture selection is carried out using the k-best method with 

a value of k set to 6. Feature selection is a technique used 

to choose a subset of relevant features from a larger set 

in order to enhance model performance and reduce com-

plexity. 

The k-best feature selection method identifies the k 

most informative features based on a scoring metric. This 

metric assesses the predictive power of each feature in-

dividually and ranks them accordingly. Features with 

higher scores are deemed more important for the model. 

By setting k to 6, the model specifically selects the top 

six features with the highest scores. This approach allows 

for a balance between model complexity and perfor-

mance, as it focuses on capturing the most relevant infor-

mation while reducing the dimensionality of the feature 

set. 

4.3. Gas Sensor Measurements Using Deep Learning 

Gas sensor measurements were used as inputs to an ar-

tificial neural network to accurately classify different gas 

types and concentrations. The artificial neural network 

was designed using 5 input layers and optimal values for 

the hyperparameters used by deep learning, as shown in 

Table 2. Deep learning was utilized to compare and com-

parison several optimizers with a constant learning rate 

of 0.001 and a decay rate of 1 * 10^-3. After conducting 

a thorough experimentation process, it was determined 

that the Adam optimizer demonstrated the strongest 

model fit and the fastest convergence rate. Therefore, the 

Adam optimizer was chosen for further analysis and ex-

perimentation. 

 

5. Results 

This section contains two important experiments. The 

first experiment is concerned with selecting features.The 

second experiment will assess the effectiveness and com-

parison of deep learning and other classifiers in machine 

learning across four distinct classes.: no gas, perfume, 

smoke, and mixed. The suggested model is implemented 

on the TensorFlow platform using Python 3 and the 

Keras framework. The suggested model is trained and 

tested using open-source Google Colab CPUs. It is pow-

ered by an Intel Core i7 processor and comes with 12 GB 

of RAM. 

 

5.1. Evaluation Stage 

During the evaluation phase, the proposed approach is 

assessed using four measures, including accuracy, preci-

sion, recall, and the F1 score. 

 

Table 2. shows the optimal values for the hyperparame-

ters determined by ANN. 

Algo-

rithm 

Hyper-parame-

ters 

Optimal Values 

 

ANN 

Dropout rate 0.2 

Number of 

epoch 

200 

Batch Size 8 

 

Accuracy: Accuracy [17] is a measure of the overall 

performance of a binary classification model. It calcu-

lates the ratio of the number of correct predictions to the 

total number of predictions made by the model, this term 

refers to the data points that the model incorrectly classi-

fies, and it can be computed using Eq. (1) . 

Accuracy = (TP + TN) / (TP + TN + FP + FN)         (1)         

Where True positives (TP) are the number of positive 

cases that were accurately predicted; True negatives 

(TN) are the number of correctly anticipated negative 

cases; false positives (FP) are the number of incorrectly 

predicted positive instances; and false negatives (FN) are 

the number of incorrectly estimated negative instances. 

Precision: Precision is a measure of the number of true 

positives divided by the total number of positive predic-

tions made by the model [18], as shown in Eq. (2). 

Precision = TP / (TP + FP)             (2) 

Recall: Recall, as shown in Eq. (3), is a measure of the 

number of true positives divided by the total number of 

actual positive instances in the data set[19]. 

Recall = TP / (TP + FN)            (3) 

F1 Score: The F1 score is a mean of harmonics of preci-

sion and recall. Eq. (4) calculates it as a measure of the 

overall performance of a binary classification model 

[20]. 

F1 Score = 2 * ((Precision * Recall) / (Precision + Re-

call))              (4) 

5.2. Feature Selection Phase Results 

The experimental results in this phase demonstrate that 

the MultimodalGasData dataset is a difficult and relevant 

dataset for gas detection and classification. To train and 

assess the model on the dataset, we employed deep learn-

ing with the Adam optimizer. On testing, the deep learn-

ing model attained an accuracy of 94%. We performed 

feature selection and retrained the model to boost the 

model's performance even further. The retrained model 

achieved 95% accuracy on the testing set, and optimal 

values for the deep learning-determined hyperparameters 

are reported in Table 3. 

 

For each of the four gas classes, the classification mod-

el's performance was tested using several metrics such as 

accuracy, loss, precision, recall, and F1 score. Table 4 

shows the individual training and testing metrics for all 

classes. 

Table 3. Optimal hyperparameter values 
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Hyperparameters Optimal val-

ues 

Batch size 8 

Learning rate  1e-4 

Number of neurons of the first dense 

layer 
1500 

Dropout rate 0.1 

 

Figure 2 represents the accuracy of an ANN model at 

every epoch before optimization (a). The training accu-

racy increases rapidly at first but then plateaus. The val-

idation accuracy also increases, but more slowly than the 

training accuracy. This suggests that the model is learn-

ing the training data well. From the loss of an ANN 

model at every epoch before optimization (b). The 

training loss decreases rapidly at first but then plateaus. 

The validation loss also decreases, but more slowly than 

the training loss. This suggests that the model is learning 

the training data well, but it may not be able to generalize 

to new data as well. The accuracy of an ANN model at 

every epoch after optimization(C). The training accuracy 

increases rapidly at first but then plateaus. The validation 

accuracy also increases, but more slowly than the train-

ing accuracy. This suggests that the model is learning the 

training data well. the training loss decreases rapidly 

over the first few epochs but then plateaus at around 0.2. 

The validation loss also decreases, but more slowly than 

the training loss. This suggests that the model may be 

learning the training data too well after optimization (d). 

       Table 4. Results Report 

ANN  Model  

 

Accuracy 

 of Training 

Accuracy  

      of 

Testing 

Class  Precision recall F-measure 

 

Before Optimization  

 

0.95 

 

0.94 

No Gas 1.00 1.00 1.00 

Perfume 0.90 0.86 0.88 

Smoke 0.87 0.91 0.89 

Mixture 1.00 1.00 1.00 

 

After Optimization 

 

0.96 

 

0.95 

No Gas 1.00 1.00 1.00 

Perfume 0.92 0.88 0.90 

Smoke 0.89 0.93 0.91 

Mixture 1.00 1.00 1.00 

                 

 
                            (a) 

 
                           (b) 

 
                            (c) 

 
                           (d) 

Figure 2. The accuracy and loss of the proposed model at every epoch: a) Accuracy of ANN model before optimization, 

b) Loss of ANN model before optimization, c) Accuracy of ANN model after optimization, d) Loss of ANN model after 

optimization. 

 

5.3. Comparison Deep Learning and Machine Learn-

ing Results 

During this Section, several experiments were con-

ducted on the dataset to determine the most suitable clas-

sifier with optimal parameter settings for classifying NO-

Gas, perfume, smoke, and mixtures. The performance of 

deep learning was compared to that of different machine 

learning classifiers, such as SVM with parameters ker-

nel='rbf', C=100000.0, gamma=" auto,”, and Decision-

Tree with parameter criterion='gini', in Table 5. The re-

sults clearly indicate that deep learning achieved the 

highest accuracy and is therefore considered the optimal 

choice. 

 

Table 5. Comparison Deep Learning and Machine 

Learning Results 
Machine Learning Model  Accuracy 

SVM 0.81 
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Decision Tree 0.83 

Deep Learning Model 0.94 

 
6. Conclusion    

In this paper, the problem addressed was the detection 

of gas leaks, which pose significant safety and environ-

mental hazards, and detecting them accurately and effi-

ciently is crucial for ensuring public safety and minimiz-

ing potential damage. The study's goal was to investigate 

the efficacy of optimized deep-learning approaches fol-

lowing feature selection in the context of gas sensors. 

The objective was to contrast the performance of classic 

machine learning like support vector machines (SVM) 

and decision trees (DT) with that of a deep learning 

model. Through the application of feature selection, the 

dimensionality of the input data was reduced, enhancing 

the efficiency and accuracy of the subsequent models. 

Additionally, an optimized deep learning approach was 

adopted, leveraging advanced algorithms such as the 

Adam optimizer to improve the deep learning model's 

performance. The experimental results showcased the 

superiority of the optimized deep learning model over 

classic machine learning algorithms. The deep learning 

model demonstrated higher accuracy and reliability in 

gas detection, outperforming SVM and DT. This high-

lights the potential of deep learning for effectively ana-

lyzing and interpreting complex patterns in gas sensor 

data. Overall, this study emphasizes the need for opti-

mized deep-learning approaches following feature selec-

tion in gas sensor data interpretation. The findings sug-

gest that deep learning models have the potential to en-

hance the performance and reliability of gas detection 

systems compared to traditional machine learning algo-

rithms. Future research can further explore and refine 

these techniques to achieve even more robust and accu-

rate gas detection systems. 
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