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In this paper, we obtain some new Hardy-type inequalities with negative exponents on
time scales. These inequalities, as a special case, when the time scale T = Rand T = N,
contain some new integral and discrete inequalities with negative exponents. To the best
of the authors' knowledge, the findings presented in this paper are assumed to be new in

literature.

1. Introduction

In 1920, Hardy [1] established his well-known discrete inequality

l [*)
l l
Un> S;(Zi:—I) :E: ﬂ#,l >1 (1.1

% (2

r=1 n=1

where {v,}2, is a nonnegative sequence such that ¥'°, v} < oo. In [2], Hardy proved the integral analogue of
(1.1) which demonstrated that for [ > 1 and g(¢) is a nonnegative function over any finite interval (0,¢) and

I g1(§)dE < wo,then
© l o
Jo (%Egmdf) dK(ﬁ) fo 9'§)ds. (1.2)

Lots of generalizations and extensions of Hardy inequality with a positive parameter have been presented in the
literature. For further details, the interested reader is referred to the papers [1, 3-8] and the books [9-12]. In the
following, we briefly point out some of these extensions that support the results in this paper.

In 1925, Hardy [2] gave a generalization to (1.1) and showed that if [ > 1,{g,};=,, {v,};=, are positive
sequences, and V. = Y7 _; v, then
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The constants in (1.2), (1.2), and (1.3) are the best possible.

In 1928, Copson [5] introduced an extended version of (1.3) and proved the discrete inequality
1

N Ur S ! AN l—c 4l
Z W Z VUngn | < (C— 1) Z vV gr (14)
r=1 |

n=1 r=1

where [ > ¢ > 1,{g,}s2, and {v,}3, are positive sequencesand v, = ¥, | _, v,.
He also proved the discrete inequality.

[oe] vr [oe] l [oe] l .
Z W Z Undn < (1 — C) Z vr g (1-5)
r=1 T n=r r=1

where0 < c<landl>1.

In [8], Leindler derived the discrete inequality
l

TZ %(Z ”ngn> < (1i C)li v (K g7 (1.6)

r=1
where 0<c<LI>1L =% _ rVn and Y v, < oo, In [3], Bennett proved a dual of (1.6) by
assuming that if ), v, <ocoand 1< c <, then

(o0} [oe] l [oe]

Yr L : x\l—c 41
D w2 wen ) <(5=g) 2, w0 (1.7
r=1 n=r r=1
The constants in (1.4), (1.5), (1.6), and (1.7) are best possible.

In 1928, Hardy [13] extended (1.2) by proving that if [,y > 1 and g(&) is a nonnegative integrable function on
(0,) such that [* g'(§)dé < oo, then

0 S sar) de< (5) 7 mma@©de (18)

y-1
and for 0 < y < 1, he proved that

& g(r)dr)l £ <(i5) [ e (19)

Recently, a lot of generalizations and extensions of Hardy inequality with negative parameters have appeared. In
the following, we recall some of these integral inequalities with power [ < 0.

In [14], it was demonstrated by the authors that if < 0,¢ > 1,g(¢) > 0 and f°° E¢(Eg (&) dE < oo, then
e (0 gar) de < () 2 e @a@)'as (1.10)

[ee]
n=r

[oe]
n=r

holds.
In the same paper, it was demonstrated that if . < 0,c < 1,g(¢) > 0 and fo"" £C(Eg(8))déE <
0, E7¢(Eg(£)) dE < oo, then the inequality

o £
j f(j g(r)dr) e j £ (Eg(£)) dE (1.11)
0 0

holds. The constants in (1.10) and (1.11) are best possible.

In [15], it was demonstrated that if [ < 0,¢ < 1 and v(¢), g(&) are positive functions, then
l

b l b
[ veov=©ci©d < (=) [ ver-©g©d (1.12)

holds, where
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3 3
V) = f v(@)dr, G(E) = f () g(@)dr
0 0

In the same paper, they also proved the inequality
l

[ vov-oaods (i) [ vosov-d
0 S\ =

where, ¢ > 1and G(¢) = f;g(r)v(r)dr.

In [15], the authors showed that if l < 0 and a # [ — 1, then
l

[ vevei@c@d < () [ veve@s @ (113)
o =\r=1=al) J;, g '
holds, where
¢

g@v()dr fora>1-1

¢
VE) = f v(@dr, G(&) =17,
0 kf g@v@)dr fora<l-1

¢

In [16], the authors demonstrated that, if 0 < s; <5, < 00,p <1< 0,0 < ¢ < 1and v(£), g(¢) are non-negative
Lebesgue measurable functions, then

;C(ff)) 2o () < (%)l < f ’ v(f)df)

1

l
(f 42 (f)df) (1.14)
W v

¢ 3
v©) = [ v and 2,0) = o [ vgar
0 S1

In the same paper, the authors also demonstrated that if c > land p < [ < 0, then

1— 1l

where,

l

l
2 v(§)(Zy2) €) L\ v(6)g"©)
fsl Vi=c(§) dEﬁ(ﬁ) <L1 v(f)df) Jsl e, d§ (1.15)
where,
_ (fv(@g@)
Zv,z(f) = Ll Wd‘[

Recently, there is a significant attention on studying dynamic inequalities and their applications on time scales.
These inequalities can be extended to the more general framework of time scales, which unifies discrete and
continuous analysis into a single theory. For a more comprehensive understanding of these inequalities, see the
books [17,18] and the papers [19 — 28].

For completeness, we present some dynamic inequalities that motivate the material discussed in this paper.
The dynamic version of (1.2) was proved in [29]. The author demonstrated that if [ > 1, g € C,4([a, »), R")and

fooogl(f)Af < oo, then
o 1 a(®) !
J <a(§) ) (T)A’> a8
l

L) [ aen (1.16)

l
If in addition ”(;) — 0asé — oo, then (i) is sharp. In [25], the authors derived the time scale version of (1.8)

wai},(J;a(f)g(T)AT)lAf lMy ffylg(f)f

as
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where [,y > 1and M > 0 such that (Lf) % They also showed that if y < 1, then

fa 0V(f)<f 9(”“) 8 <5 ly) f w(,y_ll@)gl(ms

In [24], the authors extended (1.4) and (1.5) to their time scale versions. In particular, they showed that if [,y >

1, then
o L (2 (ve®)
Ty %< =) |, @

l

y(-1)

) ©)g' ()¢
f (vv(s)) e

where

¢ ¢
V(&) =J- v(t)At and G (&) =J. v(t)g(7)At, forany & € [a, )t

and if 0 < y < 1, then
l

) v(f) l L ° 1 o -y
f Ty CEOa < (=) f () O V) 8¢ (1.17)

where

(o0}

6 = [ v@g@ar forany £ € [a,w0)y
¢
In [30], the authors extended (1.6) and (1.7) to their time scale versions. In particular, they showed that if p > 1

and 0 < ¥y < 1, then
C V() P D [° v(©)
-L A (§) (G (E)) A< (1—y> L AY- p({) gP(§AS (1.18)

where
A(é) = V(I)AI
-L

andifp >y > 1, then

v(§) P P [* v
LAy(g)(G(EDpAf ( 1) L NI (1.19)

It is important to consider that all the previously mentioned dynamic inequalities discussed the case of positive
exponents. The question is whether it is possible to establish similar dynamic inequalities of negative exponents.
In this paper, we will provide an affirmative answer to the previous question by proving some new dynamic
inequalities with negative power and getting the integral and discrete analogies of these inequalities. The
structure of the paper is as follows: In the next section, we review some definitions related to time-scale calculus.
In Section 3, we state and prove our results.

2. Preliminaries

The time-scale calculus was initiated to create a theory that unifies difference and differential equations theories.
Understanding its basics and applications can be found in Bohner and Peterson's books [31- 35]. A time scale T
is an arbitrary nonempty closed subset of R. For 7 € T, the definition of the forward and backward jump
operators g, p: T - T is o(t): = inf{z € T:z > t} and p(t): = sup{z € T: z < 7}. A function g: T - R is called
right dense-continuous (rd-continuous) if it is continuous at all right-dense points in T and there exists a finite left
limit at all left-dense points in T. We use C,;(T), to represent the set of all »d-continuous functions. We have
g°@@):= g(a(r)) and define [sy, s,]t by [sq, 5]y = {t € T:s; < T < s,}. For a function g: T - R, g2(7) is
defined as the number that satisfies the following condition:
for t € T and € > 0, there exists a neighborhood U of 7 such that

lg? (@ — 9] = g*@[o () = sl| < €la(®) = 5|, fors €U
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In  this  case, g2 (@) is said to be the delta derivative of g at 7.
If W2(1) = (1), then ¥: T — R is referred to as the delta antiderivative of 1. The integral of 1 is given by

T
J- Y(E)AE = ¥(1) — Y(1p), for 75, TET
To
One of the most widely used rules in time scale calculus is the chain rule, which states:

(P o)2(&) = f @' [Y(&) + hu©P () ]dhp () 2.1
0

where, y: T — R is delta differentiable and ¢»: R — R is continuously differentiable (see [31, Theorem 1.90]). A
special case of (2.1) is

CUGIIESZEE) fo C(h¢7 + (- WP Mdh, v € R (2.2)
Lemma 2.1 (Integration by Parts [17]). If s;, s, € T and w(&),u(é) € C,4([sy, s2]1, RY), then
fs wo A ()¢ = [w(Eu©)]T - j wAEu(E)AE 23)
and
| wEA A8 = w©Ouel - | WA (EUT (©)AE 24)
Lemma 2.2 (Weighted Holder's Inequality [17]). If 5,, s, € T and vl(s), w(E), w(€) € Crg 1[51, s,]r, RY), then
fs P(OUEW(EAE < [ j v(s)u“(E)Asr [ j v(f)w“’(f)AfF 25)

where a > 1,andi,+3=1.
a a

Lemma 2.3 (Reversed Weighted Holder's Inequality [17]). If s, s, € T and v(&), u(é),w(é) €
Cra([s1, 211, RY), the

f CUEuEwEAE > [ j zv(f)u“(E)Af]a[ j ZU(E)W“'@)Aé’]a 2.6)

wherea<00r0<a<1,and$+i=1.

3. Main Results

Throughout the rest of the paper, we will assume that the functions are positive and that all integrals involved are
presumed to exist. We also assume that v(¢) and z(&) € C,4[[0, ), R*]. We can now present and prove our
results.

Theorem 3.1. If a,b € T,0 < a < b and [ < 0, then

b b
[ voer@)'as < o[ o evions B.1)

a
where,

3 3
V(§) =j v(t)At and Q(§) =J z(1)AT
a 0
Proof. By employing (2.3) to the left-hand side of (3.1) with u2(¢) = v(¢) and w?(§) = (Q”(E))l, we obtain

b b
| voer@)'as =@+ [ u© (-(@'©)")a¢ 3.2)

where

3
u(®) = f (DA = V(E)

a
Since u(a) = 0, we conclude that
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b b
[ v ©) s =ubaio) - [ vo(ai©) s
By employing (2.2) to the term (Ql (6))A and taking into account that Q2 (&) = z(&) > 0, we obtain
1
(@©) =) [ (h07© + 1 - W) "an

< 1z(©)(Q°®)
Thus
—(Q®)" = —1z() (7 (®) (3.4)
Substituting (3.4) into (3.3), we get
b b
f 2(@(Q°@©) A > -1 f 2OVE(Q°©) 'a¢
By employing (2.6) on ff vl_Tl(f)vlT_l(f)z(f)V(f)(Q”(f))l‘lAs, with indices i and , we get

b 1w -1
[ v TovT@ove @) s
Proof. Substituting from (3.6) into (3.5), we get

-1 1

b ! b ! 1 b T
f 2(@©(07©) Afz—l(f 2(@©(2°©) As) <f vl-l(f)zl(s)w(s)As)

a

Thus
1 1
b ! T b T
<f 2©(0°©) Ae) z—l(f vl-l(f)zl(swl(s)As)
Therefore,
b I b
[ vo@©)ss <o [ vioneviens
which is (3.1).

Remark 3.1. It is worth mentioning that the inequality (3.1) represents a corresponding formula, with a negative
exponent, to the dynamic inequality proved by Saker in [36, Theorem 2.3].
Remark 3.2. If T = R in (3.1), then

b b
[ vor@@rds < ot [ vrodevieds

where, ’

3 3
1463 =f v(t)dt and Q(§) =f z(t)dt
a 0

Remark 3.3. If T = N, b = oo, {z,}22, is positive sequence and Y22, v}~z V! is convergent sequence in (3.1),

then
© r l o
> (Z zn> < (DY vt

r=1 n=0 r=1
where

1<0.1f0<c<1,then
INNERTCVH )|
) ), e G

Theorem 3.2. Assume a,b € T,0 <a<band —oo <p
» v(§)
o V()

r—1
V, = Z vy,
n=1
<
;

(279) 8¢ < (——

and
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l

l
b I l b 1-= b c P
[ ek (zo)'ae < () (f v(f)Af) p(f v(f)V”(l_T)(E)Z”(E)Af)p (38)

a V() a
where,
3 3
V(&) =J- v(t)At and Z(§) =f v(t)z(r)At (3.9
a 0
Proof. By employing (2.3) to the left-hand side of (3.7) with u(§) = 1:6(2) and w?(é) = (Z"(E))l, we obtain
b b
f ;’ff;) (2°(©) '8¢ = w@Z'OI + f u@) (-(2'©)") 8¢ (3.10)
where

$ v(1)
u(®) = f e

Since u(a) = 0, we conclude that

b U(f) o l _ L _ b I A
fa vy (27(©) 8¢ = uh)Z' ) f u(@®)(2'(©)"a

b
> - [ ue)(z'©)' ¢
By employing (2.2) and taking into account that V2(¢) = v(¢) > 0and 0 < ¢ < 1, we obtain
(171‘5(6’))A =(1- C)VA(f)f (V@) + (1 — V() “dh
0

s(1- C)V(f)fo (RV () + (1 = MV() “dh

=1 -avV~()
Thus

WOV 2 1 (V)

and then, we have
¢ v(r)
« V@
By employing (2.2) again to the term (Zl(f))A, we have

£ N\
(Zl(g))A = ((f v(r)z(r)Ar) >
0
1 o(8) £ o
= lv(f)z(f)f (h <f v(r)z(r)Ar) +(1—-h) <f v(r)z(r)Ar)) dh
0 0 0

-1

1 ¢ 1
u(®) = bz [ @) = @ (3.11)

a(§)
< W(©)2() ( j v(r)z(r)m)
0

Thus
~(21®)" 2 ~w(©2E)(2°@) (3.12)
From (3.11) and (3.12), we get
by ~1 (P u(©z©)(2°©)"
L a6) (29(9) a¢ = 1= CL =) A& (3.13)

oot
By employing (2.6) on fb—v(az(a(z ©)

. . . l
a 1) A¢, with indices Y and [, we get
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b o(©)2()(27©) ) D@2\
fa Ve1(E) ASE(L vc(g)(z ©) Af) (L vc——l(f)Af> (3.14)

Substituting from (3.14) into (3.13), we get

-1
l

-1

1
D) L (@ . N[ Pu©AE  \T
fa Ve Z7©) Afzﬁ(L Ve Z7©) Af) U VeI(E) AE)

th
N b 7 b l 7
V() L) l v(©)z'(§) |\
<f vegg 276 Af) Zc—l(fa VeI AE)
Therefore,
> () (z°(®)'a << ! )l bV(f)Z’(f)A
Ve F IR =) ) v ¥
which is (3.7).
By employing (2.5), with conjugate exponents % and £, on [ Z ”é?_zlz(;;) A&, we get
l l
b I \'/ b 1=/ b ¢ )
s @ @)'ac < () ([ vone) ([ et Do)

which provides (3.8).
Corollary 3.1. If v(t) = 1 in Theorem 3.2, then V(§) = & — a and we deduce under the assumption b = oo that,
the following inequality

l

o () ! I o

[ ¢-o ( | z(r)Ar) s<(—) [ €-aresens (3.15)
a 0 - a

holds.

Remark 3.4. If T = N, b = o0 and {z,}%2,, {v,}3%, are positive sequences such that .~ v, W=zt is

convergent sequence and V, = Y721 v, in (3.7), then

o r l )
Ur L lyl-c
2, e\ 2 e | = (c=5) 2, vt
r=1 n=0 r=1

which is similar to (1.4) but with a negative exponentland 0 < ¢ < 1.
Remark 3.5. If T = R and b = o in (3.7), then we have the following Coposon-type inequality with a negative

parameter
* @ ((f l LA (7 v@©2'©
fa o <f0 v(r)z(r)dr) dfs(c_1> fa ey %

Theorem 3.3. Assume b € T,b < coand —o <p <[ <0.1f0 <c < 1, then

Pov@E) o L v©7'(©)
cZ Af = c— A 3.16
0 (Aa(é’)) (©)a8 (c—l)]o (AJ(E)) L ( )
and
s @ne = () (1) 7 (1 vo @) e ene)
where,
b _ [ee]
A(E) =J v(t)At and Z(§) =J- v(1)z(7)AT (3.17)
§ £

Proof. By employing (2.4) to the left-hand side of (3.16) with u2(¢) = :C(—(?) and w(¢) = z (&), we obtain
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bow@) 3 —1_ b b o <_z >A
[, GeyZ @ =z ®l + [ e@)(F'o) s
where

b v

=— _A
u($) . o) T

Since u(b) = 0 in (3.18), we conclude that

b b a
f @) 2 e = —uZ'(0) - f u“(f)(?(f)) A¢

(A2 (®)°
b o A
>_ f () (Z (f)) Ag

By employing (2.2) and taking into account that A*(§) = —v(§) < 0and 0 < ¢ < 1, we obtain
(a-©)'=a- C)AA(E)f (hA?(®) + (1 — K)A)) “dh
0

1
2 (= 0w@® [ () + (1 - W) “an
0

= (c - DO @®) "
Thus

—c 1
O @) 2 — ()"

and then, we have

b () 1 A 1 1-c
—10 — AT > 1-c > a
u?(§) L(f) (AG(T))C T> - 1L(€) (A (T)) At > T C(A (f))

A
By employing (2.2) again to the term <§l(§)> , we have

- A o N
(Z (f)) = ((f v(r)z(r)Ar) )
3
1-1
= —w(&)z(&) Jl (h (Jm v(‘[)z(‘[)Ar) +(1-h) <j°o v(r)z(r)Ar)) dh
0 a(§) ¢

From (3.19) and (3.20), we get
T —l (P u©zOZ @)
=2 (DAL = ——SAE
Jo(zvf(f)) ©) 1_cf0 (A°(®)

b v@zZ ()
0 " (av@)eT

By employing (2.6) on f A&, with indices i and [, we get

-1 1
P u©zOZ @) ( b >_< b v(©)7'() )T
— 1 A= c3 (§)AS —AS ] -

fo (A7(©)) o (@) fo (ao@)™
Substituting from (3.22) into (3.21), we get

-1
b V(T) l

_ 1 ( owE ) (bv(f)z‘(s‘) )T
=Z (A = =3 (§)A — 4
» ey - D% 1—c<fo ey % ) o)

Thus

(3.18)

(3.19)

(3.21)

(3.22)
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1 1
b)) >T ! (bv(f)zl(f) )T
s (A | = " AE
(J:) (A7(9) ‘ c—1 fo (A2 (D) !

bov(n) LA (P v@)ZHE)
zZ AE < A
| o ® e<(=) [ o

Therefore,

which is (3.16).
b v(@©)z®
0 (A9()et

L L
") L[ e o p(1-%) p
[ ez @ne < (=) ([ veone) ([ wowe@yt Deron)

which provides (3.17).

Remark 3.6. It is worth mentioning that inequality (3.16) represents a corresponding formula, with a negative
exponent, to the inequality (1.18).

Remark 3.7. If T = Rand b < o in (3.16), then

By employing (2.5), with conjugate exponents ﬁ and % onf A&, we get

b () < f°° )l LA (P v@72 @
v dr ) dg < ( ) f d 3.23
fo o), @) @< (=) | e (323)
Remark 3.8. If T = N and {z,};%,, {v,.}y~, are positive sequences such that ), f: v,zL A€ is convergent

sequence and A, = Y2 _. v, in (3.16), then
b—-1 e l lb—l

Yr L l-c,l
5 (3 ) < (1) 3 v
r=1 | \n=r r=1

which is a corresponding formula to (1.6), but with negative exponent [.
Theorem 3.4. Assume a,b € T,a>0and —o <p <1< 0.If0<c+1<1,then

[ gteronss i) [ 555

T AE (3.24)

and

l
Pow© N ol b () ?
fa perigy (27©) A€S(C " 1—1) (f v(s‘)AE) <f ﬁ(g)zr’@)As) (3.25)

where V(¢) and Z (&) are given in (3.9).
Proof. By employing (2.3) to the left-hand side of (3.24) with

a(&)
WA(E) = @) ( j v(r)z(‘r)Ar)
0

l

VEH(E) and wo(E)
we get

P o® b
e (27©) 88 =@l - | u@wt g

where
3
u(é) =L %AT

Since u(a) = 0, we conclude that

i) oY) A — Lp) — ’ Leey)A
| i (27©)'a =uw)z'®) - | ue) (@) 0z

b
> f u(®)(2'©) ¢
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From (2.2), we see that
(V@) = (- e = DVA©) fo (e + - ) an
Since our assumptions imply that VA(§) = v(§) > 0and 0 < c + 1 < 1, we get
(Vl_c_l(vf))A <SA-c—DVAE) fol (WY (&) + (1 = V() dh.
=1 -c— DOV

— ¢ U(T) 1 d 1-c— A
u(«f)—L VTI(‘[)A‘EZﬁL (V l(T)) At

By employing (2.2) again to the term (Zl(f))A, we see that

£ 0\
(Zl(f))A = ((f U(T)Z(T)AT) )
0
1 o(©) £ o
= lv(f)z(f)f h <j U(T)Z(T)AT) +(1-h) (f v(‘[)z(r)Ar) dh
0 0 0

-1

Thus

a(§)
< W(O)2(©) ( f v(r)z(r)Ar)
0
Thus
—(21®)" 2 ~w(©zE)(2°@)
From (3.26) and (3.27), we get

b b
- [ w@@ @) 82 [ ooV @) a

Consequently

Pu@) ! Pv(@)z(§) ,_, -1
fa V"‘+—’(€)(Z (&) A¢ = - 1.[1 Veric) (29(9) A¢
By employing (2.6) on [ Z ;c(fl)_zfz) (Z"(E))HAE, with conjugate exponents z—% and 1, we obtain

-1

b o(©)2(E) . P ou®) L \T P u©A©  \T
B8 o[ o) [ 204

Consequently,
o i

b v(&) bv(é’)z [€3)
(e (ze@) ) T (2 )"

I} s (7)) 8¢ =

Therefore,
b op@) N L ([Pu@®A@
<f perigg Z79) “) 2c+l—1<fa 6 “)
Thus,
v L Pv(©z'(9)
chﬂ(g) (27) A§S<c+z—1)fa Ve %

which provides (3.24).

. . . P . P b v(§)z'(§)
Applying (2.5), with conjugate exponents = and 7 on fa Ve ———=> A&, we get

l l
P w© Loy (e z
[ org @ @a < (=) ([ vons) "([ 2 @mcerne)

(3.27)
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which is (3.25).
Remark 3.9. If T = N, b = o0 and {z, };2,, {v,-};2, are positive sequences in (3.24), then

1) r l [ ©

v, l
r lyy)—c

D I e D

r=1 n=0 r=1
where,

r—1
V, = Z Up
n=1
Remark 3.10. If T = R in (3.24), then we obtain the following inequality with a negative parameter
b (E) ( f ) LN P o©2'©
2O ([ satone) a < () [ 2L2D,
J; v\, vz | & <(Za7) | e &
which is a corresponding formula to (1.13).
Theorem 3.5. Assumea,b € Tand0 <a < b < co. Ify —1 = 0, then
l
b v () (2 (o)) —IK b y(9)74(8)
« (V@) 4 a (V(9)
and
b v(§) (Z*(J(E)))l —IKHr-1\' /(b 1—% b y(&)zP(§) %
| 06 = Ty ([ vene) M| [ O u (329)
a  (V0(©®) 14 a a (Vo))

where,

(v e [z
K= 1rflf<v0(€)> >0 and Z7(¢) —jo o) AT

Proof. By employing (2.3) to the right-hand side of (3.28) with

) .
ul(é) = v — (z(o(®)
(Vo)™ and wo(§) ( ( ))
we get
l
P () (Z*("(f))) abo (P A
A = z - 7 A
J, ey T OE O] - [ wo (@)Y s
where

§ v
=] —2__A
u(f) Ja (VU(T))l_y T
Since u(a) = 0, we conclude that

fb v (2°(0®))
a V@)

b
se=ut)(z ) - [ uw© ((z©)) ag

a

> [ ue (@ @)) oz
From (2.2), we see that ’
V@) = A +y - DVAE) j (W@ + (- @) an
Since VA(§) = v(§) > 0andy — [ = 0, we get ’

W) < (1 4y - ) —8

(we©)"™”
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Thus
v($)

1+y-1rzy)A
ooy STy ®)

Consequently,

£ () N
u(f)zfa (V”(T))Z_YA > 1+]/ f (Vl y- l(T)) At

1 V(f) 1+y-1 Ly
:1+y—l<v0(€)> e@)™

A
By employing (2.2) to the term ((Z*({))l) , We obtain

(z@)) = (( | f ”f;)—fg)m)lf

= 1(z*®)" f (hz*(e(®) + (1 - h)Z*(E))H dh
0

vz /. -1
= l<vu—(§)) (z'(c®))

- ((z*((s))l)A > —1 (vgj(zg)) (Z*(cr(f)))l_1 (3:31)
From (3.30) and (3.31), we get

l
(@ (2°(6©)) 1K (w2 eyt -1
J a¢ > (T ) @)™ (2 (o) ™ o

Thus

ve©)” T tHr—th
—IK L 0 ()€ 1
= z* A
1+V—l o ((va(f))l_y>( (@) ¢

po(©2O(2° ()

By employing (2.6) on |, o)

A&, with conjugate exponents l_il and [, we see that

o~

-1

f ) (z*("(f)))l_lAf > (j i (Z*(U(E)))1A5> | (f b MAJ

(vo©)"™” (e ©)"™” a (ve@)™"

Consequently,

l__l 1
fb”(f)(z*(ff(f)))lA L T ”(f)(z*(f’(f”)l& l(fb LGOI )
a (o)™ T 14yl (o)™ (Vo)™
Therefore,
J vO(Z0@) T>_”{1+H(f wOZ(E) s‘)
a  (ve®)”’ 1ty =U\Ja (vee)”
Thus,

v© (7)) ( K- ) fb vOAE
« (ve©)” T+y—1 a(vv(f))”
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which is (3.28).
b v(§)z'(§)

. . . p p
By employing (2.5), with conjugate exponents i and T 0n fa W)

A&, we get

l

l l )
2v(©) (2°(o()) LIk o PP v©7E©
[y = () ([ wome) ([

(Vo)

which is (3.29).

Remark 3.11. If y = Ll and K = inf (V(a

V(&)

) in (3.28), then we obtain the following inequality with a negative
parameter

b b
| v(f)<f0 ”(;)(ng) )As‘<( ) [ vz a8

which is a corresponding formula to the dynamic inequality proved by Saker in [37, Theorem 2.5].
Remark 3.12. If T = R, b = co and y = [ in (3.28), then

@ v(r)z(r) ©
J v(f)(fo e )dé’<( ' | w6 (332)

If v(&) = 1in (3.32), then we obtain the Copson-type inequality

jw<j0 0 )d€<( wy' [ 26

Remark 3.13. If T = N and v, z,, are positive sequences in (3.28), then

o) r l 1 ©
v VpZ LKyt vz}
Z i3 (z ;;n) < <l_ - 1) z > (3.33)
r=1 Vr n=o0 14 =1 v

vrzr

where V. = Y7 _; v, and Y72 1,

< 0o,
If y = 1in (3.33), then we obtam the discrete Copson-type inequality
© r l ©
VUnZ.
> () ) <y v
Vn
r=1 n=0 r=1

Theorem 3.6. Assume a,b € Tand b < . If =1 <y — 1 < 0, then

l
2 (Z'©) L\ (P2
[rOE) oy e

- < (3.34)
(A7) =0y ey
and
@ (Z©) Lo 5 b Z
1 P p
| 0= (=) ([ voe) T [T ue (335)
o (A®) Ly =1\ o ()T
where,
3 b = [T v@z()
A(E) —L v(t)At and Z (&) —L —A”(r) AT

Proof. By employing (2.4) to the right-hand side of (3.34) with

@ BN
uh(E) = 7 =(z'®
(A°(©)' ™ and w(f) < )

we get
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b A

~[(w® (F@)) ae

3 b v
u(®) = - L o

—* t
fob Mg =u($) (E*(f))

(re(®))"”

where

Since u(b) = 0, we conclude that

—x l
[ —vzi)d(;)(i) w=(Zw) - [ wo(Fo))

A

b l
>—| u° z A
> - [(wo (o))
From (2.2), we see that

(A4@©)" = (L +y = DAAE) f (hA7(§) + (1 = WAE) ' dn
0

Since our assumptions imply that A2(§) = —v(§) < 0andy — [ < 0, we get

€3]
(A1) = —(1 4y - ) —2
(A @®)™"
Thus
U(f) ALYl
(ao©)™ ™ ey 0O
Consequently,
b v(7) -1
1,0 — AT > A1+y l A
e fa(f) (re(@)"” IR a(f)( )’ ar

By employing (2.2) to the term ((Z (5)) ) , we obtain

(e (520
i3 A’ (7)
-1

(Z®) | (F @) ra-nZ®) an

From (3.36) and (3.37), we get

) (2©) v(§)2(§) vyt [\
| @ =iy, (o )o@ (B o) e

v(§)z($) -1
-1 +]/—lJ- ((A”(f))l V) (f)) A

By employing (2.6) on fob ((Zc(f(;gf—)y) (z (é)) o A&, with conjugate exponents [ /(L — 1) and [, we see that
o2 (2©) v o) (Z'®) T p(OAE N\
f - AS = J oo A ( - A€>
0 ANty o (A7) o (A7(ENHY

Consequently,
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-1
l

—s 1 — ! - 1
bvu()(Z @) 1 (v ®(Z®) b y©ZE  \!
J, w22 =l | e (f (AG(&))I-VAS()
Therefore,
— l % 1
fbv(f) (z'®) — ( b (@7 () )l
— AN > A&
o (ATENTY T+y—1\J, (A7(ENtY
Thus
»v(@©) (Z'©) —L P e
J, G2 =< (=0 |, oconer®
which is (3.34).
By employing (2.5), with conjugate exponents p/(p — 1) and p/I, on fob (Zf();;)(f_)y A&, we get

l

—x l l
vu()(Z' () NNV RGN GINY
fo oo =) Uo "GW) (fo @yt Af)
which is (3.35).
Remark 3.14. If T = Rand y = L in (3.34), then
b OO ’
[ v J MO ) as < b [ vzt (339)

If v(&) = 1in (3.38), then we obtain the Copson-type inequality.

ETSEIGIAN b
L({ b_Tdr) dss(—l)lfo z(§)ds

Remark 3.15. If T = N and v, z, are positive sequences in (3.34), then we have that

b-1 ) l I (b1 .
< 3.39
ZAH’< An> “\U-y-1 ALY (3:39)
T n=r T

r=0 r=0

where, A, = Yb_ v, and Y221 v,z /ALY < 0.
Remark 3.16. If y = [ in (3.39), then we get the discrete Copson-type inequality

b-1 0 l b-1
v,Z
>ou(X52) 2oy v
n

=0 n=r r=0

4. Conclusion
In this paper, by making use of time scale calculus, we have derived some new Hardy-type weighted dynamic
inequalities with negative exponents. The integral and discrete Hardy-type inequalities, presented as special cases
of our main findings, are novel contributions. For future work, we plan to focus on deriving additional dynamic
inequalities with negative exponents.
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